anuragshas commited on
Commit
afc2b20
·
1 Parent(s): 0c06521

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +113 -0
app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import numpy as np
3
+ import tensorflow as tf
4
+ from tensorflow import keras
5
+
6
+ from huggingface_hub import from_pretrained_keras
7
+
8
+ import gradio as gr
9
+
10
+ latent_dim = 256
11
+ num_encoder_tokens = 71
12
+ max_encoder_seq_length = 15
13
+ num_decoder_tokens = 92
14
+ max_decoder_seq_length = 59
15
+
16
+ with open("input_vocab.json", "r", encoding="utf-8") as f:
17
+ input_token_index = json.load(f)
18
+ with open("target_vocab.json", "r", encoding="utf-8") as f:
19
+ target_token_index = json.load(f)
20
+
21
+ model = from_pretrained_keras("keras-io/char-lstm-seq2seq")
22
+
23
+ # Define sampling models
24
+ # Restore the model and construct the encoder and decoder.
25
+
26
+ encoder_inputs = model.input[0] # input_1
27
+ encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1
28
+ encoder_states = [state_h_enc, state_c_enc]
29
+ encoder_model = keras.Model(encoder_inputs, encoder_states)
30
+
31
+ decoder_inputs = model.input[1] # input_2
32
+ decoder_state_input_h = keras.Input(shape=(latent_dim,), name="input_3")
33
+ decoder_state_input_c = keras.Input(shape=(latent_dim,), name="input_4")
34
+ decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
35
+ decoder_lstm = model.layers[3]
36
+ decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
37
+ decoder_inputs, initial_state=decoder_states_inputs
38
+ )
39
+ decoder_states = [state_h_dec, state_c_dec]
40
+ decoder_dense = model.layers[4]
41
+ decoder_outputs = decoder_dense(decoder_outputs)
42
+
43
+ decoder_model = keras.Model(
44
+ [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
45
+ )
46
+
47
+ # Reverse-lookup token index to decode sequences back to
48
+ # something readable.
49
+ reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
50
+ reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())
51
+
52
+
53
+ def decode_sequence(input_seq):
54
+ # Encode the input as state vectors.
55
+ states_value = encoder_model.predict(input_seq)
56
+
57
+ # Generate empty target sequence of length 1.
58
+ target_seq = np.zeros((1, 1, num_decoder_tokens))
59
+ # Populate the first character of target sequence with the start character.
60
+ target_seq[0, 0, target_token_index["\t"]] = 1.0
61
+
62
+ # Sampling loop for a batch of sequences
63
+ # (to simplify, here we assume a batch of size 1).
64
+ stop_condition = False
65
+ decoded_sentence = ""
66
+ while not stop_condition:
67
+ output_tokens, h, c = decoder_model.predict([target_seq] + states_value)
68
+
69
+ # Sample a token
70
+ sampled_token_index = np.argmax(output_tokens[0, -1, :])
71
+ sampled_char = reverse_target_char_index[sampled_token_index]
72
+ decoded_sentence += sampled_char
73
+
74
+ # Exit condition: either hit max length
75
+ # or find stop character.
76
+ if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
77
+ stop_condition = True
78
+
79
+ # Update the target sequence (of length 1).
80
+ target_seq = np.zeros((1, 1, num_decoder_tokens))
81
+ target_seq[0, 0, sampled_token_index] = 1.0
82
+
83
+ # Update states
84
+ states_value = [h, c]
85
+ return decoded_sentence
86
+
87
+
88
+ def translate(input_text):
89
+ encoder_input_data = np.zeros(
90
+ (1, max_encoder_seq_length, num_encoder_tokens), dtype="float32"
91
+ )
92
+ for t, char in enumerate(input_text):
93
+ encoder_input_data[0, t, input_token_index[char]] = 1.0
94
+ encoder_input_data[0, t + 1 :, input_token_index[" "]] = 1.0
95
+ target_text = decode_sequence(encoder_input_data)
96
+ return target_text
97
+
98
+
99
+ input_box = gr.inputs.Textbox(type="str", label="Input Text")
100
+ target = gr.outputs.Textbox()
101
+
102
+ iface = gr.Interface(
103
+ translate,
104
+ input_box,
105
+ target,
106
+ title="Character-level recurrent sequence-to-sequence model",
107
+ description="Model for Translating English to French using a Character-level recurrent sequence-to-sequence trained with small data.",
108
+ article='Author: <a href="https://huggingface.co/anuragshas">Anurag Singh</a> . Based on the keras example from <a href="https://keras.io/examples/nlp/lstm_seq2seq//">fchollet</a>',
109
+ examples=["Hi.", "Wait!", "Go on."],
110
+ )
111
+
112
+
113
+ iface.launch()