Spaces:
Runtime error
Runtime error
Commit
·
afc2b20
1
Parent(s):
0c06521
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow import keras
|
5 |
+
|
6 |
+
from huggingface_hub import from_pretrained_keras
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
latent_dim = 256
|
11 |
+
num_encoder_tokens = 71
|
12 |
+
max_encoder_seq_length = 15
|
13 |
+
num_decoder_tokens = 92
|
14 |
+
max_decoder_seq_length = 59
|
15 |
+
|
16 |
+
with open("input_vocab.json", "r", encoding="utf-8") as f:
|
17 |
+
input_token_index = json.load(f)
|
18 |
+
with open("target_vocab.json", "r", encoding="utf-8") as f:
|
19 |
+
target_token_index = json.load(f)
|
20 |
+
|
21 |
+
model = from_pretrained_keras("keras-io/char-lstm-seq2seq")
|
22 |
+
|
23 |
+
# Define sampling models
|
24 |
+
# Restore the model and construct the encoder and decoder.
|
25 |
+
|
26 |
+
encoder_inputs = model.input[0] # input_1
|
27 |
+
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1
|
28 |
+
encoder_states = [state_h_enc, state_c_enc]
|
29 |
+
encoder_model = keras.Model(encoder_inputs, encoder_states)
|
30 |
+
|
31 |
+
decoder_inputs = model.input[1] # input_2
|
32 |
+
decoder_state_input_h = keras.Input(shape=(latent_dim,), name="input_3")
|
33 |
+
decoder_state_input_c = keras.Input(shape=(latent_dim,), name="input_4")
|
34 |
+
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
|
35 |
+
decoder_lstm = model.layers[3]
|
36 |
+
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
|
37 |
+
decoder_inputs, initial_state=decoder_states_inputs
|
38 |
+
)
|
39 |
+
decoder_states = [state_h_dec, state_c_dec]
|
40 |
+
decoder_dense = model.layers[4]
|
41 |
+
decoder_outputs = decoder_dense(decoder_outputs)
|
42 |
+
|
43 |
+
decoder_model = keras.Model(
|
44 |
+
[decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
|
45 |
+
)
|
46 |
+
|
47 |
+
# Reverse-lookup token index to decode sequences back to
|
48 |
+
# something readable.
|
49 |
+
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
|
50 |
+
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())
|
51 |
+
|
52 |
+
|
53 |
+
def decode_sequence(input_seq):
|
54 |
+
# Encode the input as state vectors.
|
55 |
+
states_value = encoder_model.predict(input_seq)
|
56 |
+
|
57 |
+
# Generate empty target sequence of length 1.
|
58 |
+
target_seq = np.zeros((1, 1, num_decoder_tokens))
|
59 |
+
# Populate the first character of target sequence with the start character.
|
60 |
+
target_seq[0, 0, target_token_index["\t"]] = 1.0
|
61 |
+
|
62 |
+
# Sampling loop for a batch of sequences
|
63 |
+
# (to simplify, here we assume a batch of size 1).
|
64 |
+
stop_condition = False
|
65 |
+
decoded_sentence = ""
|
66 |
+
while not stop_condition:
|
67 |
+
output_tokens, h, c = decoder_model.predict([target_seq] + states_value)
|
68 |
+
|
69 |
+
# Sample a token
|
70 |
+
sampled_token_index = np.argmax(output_tokens[0, -1, :])
|
71 |
+
sampled_char = reverse_target_char_index[sampled_token_index]
|
72 |
+
decoded_sentence += sampled_char
|
73 |
+
|
74 |
+
# Exit condition: either hit max length
|
75 |
+
# or find stop character.
|
76 |
+
if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
|
77 |
+
stop_condition = True
|
78 |
+
|
79 |
+
# Update the target sequence (of length 1).
|
80 |
+
target_seq = np.zeros((1, 1, num_decoder_tokens))
|
81 |
+
target_seq[0, 0, sampled_token_index] = 1.0
|
82 |
+
|
83 |
+
# Update states
|
84 |
+
states_value = [h, c]
|
85 |
+
return decoded_sentence
|
86 |
+
|
87 |
+
|
88 |
+
def translate(input_text):
|
89 |
+
encoder_input_data = np.zeros(
|
90 |
+
(1, max_encoder_seq_length, num_encoder_tokens), dtype="float32"
|
91 |
+
)
|
92 |
+
for t, char in enumerate(input_text):
|
93 |
+
encoder_input_data[0, t, input_token_index[char]] = 1.0
|
94 |
+
encoder_input_data[0, t + 1 :, input_token_index[" "]] = 1.0
|
95 |
+
target_text = decode_sequence(encoder_input_data)
|
96 |
+
return target_text
|
97 |
+
|
98 |
+
|
99 |
+
input_box = gr.inputs.Textbox(type="str", label="Input Text")
|
100 |
+
target = gr.outputs.Textbox()
|
101 |
+
|
102 |
+
iface = gr.Interface(
|
103 |
+
translate,
|
104 |
+
input_box,
|
105 |
+
target,
|
106 |
+
title="Character-level recurrent sequence-to-sequence model",
|
107 |
+
description="Model for Translating English to French using a Character-level recurrent sequence-to-sequence trained with small data.",
|
108 |
+
article='Author: <a href="https://huggingface.co/anuragshas">Anurag Singh</a> . Based on the keras example from <a href="https://keras.io/examples/nlp/lstm_seq2seq//">fchollet</a>',
|
109 |
+
examples=["Hi.", "Wait!", "Go on."],
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
iface.launch()
|