File size: 15,505 Bytes
b800b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5iJqHKEQx66F"
      },
      "source": [
        "# Next-Frame Video Prediction with Convolutional LSTMs\n",
        "\n",
        "**Author:** [Amogh Joshi](https://github.com/amogh7joshi)<br>\n",
        "**Date created:** 2021/06/02<br>\n",
        "**Last modified:** 2021/06/05<br>\n",
        "**Description:** How to build and train a convolutional LSTM model for next-frame video prediction."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9vv8zp4vx66K"
      },
      "source": [
        "## Introduction\n",
        "\n",
        "The\n",
        "[Convolutional LSTM](https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf)\n",
        "architectures bring together time series processing and computer vision by\n",
        "introducing a convolutional recurrent cell in a LSTM layer. In this example, we will explore the\n",
        "Convolutional LSTM model in an application to next-frame prediction, the process\n",
        "of predicting what video frames come next given a series of past frames."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "daG-n305x66K"
      },
      "source": [
        "## Setup"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "4Xx9qttUx66L"
      },
      "outputs": [],
      "source": [
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "import tensorflow as tf\n",
        "from tensorflow import keras\n",
        "from tensorflow.keras import layers\n",
        "\n",
        "import io\n",
        "import imageio\n",
        "from IPython.display import Image, display\n",
        "from ipywidgets import widgets, Layout, HBox"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "w-uOOdg1x66M"
      },
      "source": [
        "## Dataset Construction\n",
        "\n",
        "For this example, we will be using the\n",
        "[Moving MNIST](http://www.cs.toronto.edu/~nitish/unsupervised_video/)\n",
        "dataset.\n",
        "\n",
        "We will download the dataset and then construct and\n",
        "preprocess training and validation sets.\n",
        "\n",
        "For next-frame prediction, our model will be using a previous frame,\n",
        "which we'll call `f_n`, to predict a new frame, called `f_(n + 1)`.\n",
        "To allow the model to create these predictions, we'll need to process\n",
        "the data such that we have \"shifted\" inputs and outputs, where the\n",
        "input data is frame `x_n`, being used to predict frame `y_(n + 1)`."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "H6_vt6q4x66N"
      },
      "outputs": [],
      "source": [
        "# Download and load the dataset.\n",
        "fpath = keras.utils.get_file(\n",
        "    \"moving_mnist.npy\",\n",
        "    \"http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy\",\n",
        ")\n",
        "dataset = np.load(fpath)\n",
        "\n",
        "# Swap the axes representing the number of frames and number of data samples.\n",
        "dataset = np.swapaxes(dataset, 0, 1)\n",
        "# We'll pick out 1000 of the 10000 total examples and use those.\n",
        "dataset = dataset[:1000, ...]\n",
        "# Add a channel dimension since the images are grayscale.\n",
        "dataset = np.expand_dims(dataset, axis=-1)\n",
        "\n",
        "# Split into train and validation sets using indexing to optimize memory.\n",
        "indexes = np.arange(dataset.shape[0])\n",
        "np.random.shuffle(indexes)\n",
        "train_index = indexes[: int(0.9 * dataset.shape[0])]\n",
        "val_index = indexes[int(0.9 * dataset.shape[0]) :]\n",
        "train_dataset = dataset[train_index]\n",
        "val_dataset = dataset[val_index]\n",
        "\n",
        "# Normalize the data to the 0-1 range.\n",
        "train_dataset = train_dataset / 255\n",
        "val_dataset = val_dataset / 255\n",
        "\n",
        "# We'll define a helper function to shift the frames, where\n",
        "# `x` is frames 0 to n - 1, and `y` is frames 1 to n.\n",
        "def create_shifted_frames(data):\n",
        "    x = data[:, 0 : data.shape[1] - 1, :, :]\n",
        "    y = data[:, 1 : data.shape[1], :, :]\n",
        "    return x, y\n",
        "\n",
        "\n",
        "# Apply the processing function to the datasets.\n",
        "x_train, y_train = create_shifted_frames(train_dataset)\n",
        "x_val, y_val = create_shifted_frames(val_dataset)\n",
        "\n",
        "# Inspect the dataset.\n",
        "print(\"Training Dataset Shapes: \" + str(x_train.shape) + \", \" + str(y_train.shape))\n",
        "print(\"Validation Dataset Shapes: \" + str(x_val.shape) + \", \" + str(y_val.shape))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "wJhm7oM7x66O"
      },
      "source": [
        "## Data Visualization\n",
        "\n",
        "Our data consists of sequences of frames, each of which\n",
        "are used to predict the upcoming frame. Let's take a look\n",
        "at some of these sequential frames."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "jFE2fY1xx66O"
      },
      "outputs": [],
      "source": [
        "# Construct a figure on which we will visualize the images.\n",
        "fig, axes = plt.subplots(4, 5, figsize=(10, 8))\n",
        "\n",
        "# Plot each of the sequential images for one random data example.\n",
        "data_choice = np.random.choice(range(len(train_dataset)), size=1)[0]\n",
        "for idx, ax in enumerate(axes.flat):\n",
        "    ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap=\"gray\")\n",
        "    ax.set_title(f\"Frame {idx + 1}\")\n",
        "    ax.axis(\"off\")\n",
        "\n",
        "# Print information and display the figure.\n",
        "print(f\"Displaying frames for example {data_choice}.\")\n",
        "plt.show()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "jPQQIUm6x66P"
      },
      "source": [
        "## Model Construction\n",
        "\n",
        "To build a Convolutional LSTM model, we will use the\n",
        "`ConvLSTM2D` layer, which will accept inputs of shape\n",
        "`(batch_size, num_frames, width, height, channels)`, and return\n",
        "a prediction movie of the same shape."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "D3OvRaVpx66P"
      },
      "outputs": [],
      "source": [
        "# Construct the input layer with no definite frame size.\n",
        "inp = layers.Input(shape=(None, *x_train.shape[2:]))\n",
        "\n",
        "# We will construct 3 `ConvLSTM2D` layers with batch normalization,\n",
        "# followed by a `Conv3D` layer for the spatiotemporal outputs.\n",
        "x = layers.ConvLSTM2D(\n",
        "    filters=64,\n",
        "    kernel_size=(5, 5),\n",
        "    padding=\"same\",\n",
        "    return_sequences=True,\n",
        "    activation=\"relu\",\n",
        ")(inp)\n",
        "x = layers.BatchNormalization()(x)\n",
        "x = layers.ConvLSTM2D(\n",
        "    filters=64,\n",
        "    kernel_size=(3, 3),\n",
        "    padding=\"same\",\n",
        "    return_sequences=True,\n",
        "    activation=\"relu\",\n",
        ")(x)\n",
        "x = layers.BatchNormalization()(x)\n",
        "x = layers.ConvLSTM2D(\n",
        "    filters=64,\n",
        "    kernel_size=(1, 1),\n",
        "    padding=\"same\",\n",
        "    return_sequences=True,\n",
        "    activation=\"relu\",\n",
        ")(x)\n",
        "x = layers.Conv3D(\n",
        "    filters=1, kernel_size=(3, 3, 3), activation=\"sigmoid\", padding=\"same\"\n",
        ")(x)\n",
        "\n",
        "# Next, we will build the complete model and compile it.\n",
        "model = keras.models.Model(inp, x)\n",
        "model.compile(\n",
        "    loss=keras.losses.binary_crossentropy, optimizer=keras.optimizers.Adam(),\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Nd0VLhrvx66Q"
      },
      "source": [
        "## Model Training\n",
        "\n",
        "With our model and data constructed, we can now train the model."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "v9U57leux66Q"
      },
      "outputs": [],
      "source": [
        "# Define some callbacks to improve training.\n",
        "early_stopping = keras.callbacks.EarlyStopping(monitor=\"val_loss\", patience=10)\n",
        "reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor=\"val_loss\", patience=5)\n",
        "\n",
        "# Define modifiable training hyperparameters.\n",
        "epochs = 20\n",
        "batch_size = 5\n",
        "\n",
        "# Fit the model to the training data.\n",
        "model.fit(\n",
        "    x_train,\n",
        "    y_train,\n",
        "    batch_size=batch_size,\n",
        "    epochs=epochs,\n",
        "    validation_data=(x_val, y_val),\n",
        "    callbacks=[early_stopping, reduce_lr],\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "RxB7zZIxx66R"
      },
      "source": [
        "## Frame Prediction Visualizations\n",
        "\n",
        "With our model now constructed and trained, we can generate\n",
        "some example frame predictions based on a new video.\n",
        "\n",
        "We'll pick a random example from the validation set and\n",
        "then choose the first ten frames from them. From there, we can\n",
        "allow the model to predict 10 new frames, which we can compare\n",
        "to the ground truth frame predictions."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "qsujRd4Ex66R"
      },
      "outputs": [],
      "source": [
        "# Select a random example from the validation dataset.\n",
        "example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]]\n",
        "\n",
        "# Pick the first/last ten frames from the example.\n",
        "frames = example[:10, ...]\n",
        "original_frames = example[10:, ...]\n",
        "\n",
        "# Predict a new set of 10 frames.\n",
        "for _ in range(10):\n",
        "    # Extract the model's prediction and post-process it.\n",
        "    new_prediction = model.predict(np.expand_dims(frames, axis=0))\n",
        "    new_prediction = np.squeeze(new_prediction, axis=0)\n",
        "    predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n",
        "\n",
        "    # Extend the set of prediction frames.\n",
        "    frames = np.concatenate((frames, predicted_frame), axis=0)\n",
        "\n",
        "# Construct a figure for the original and new frames.\n",
        "fig, axes = plt.subplots(2, 10, figsize=(20, 4))\n",
        "\n",
        "# Plot the original frames.\n",
        "for idx, ax in enumerate(axes[0]):\n",
        "    ax.imshow(np.squeeze(original_frames[idx]), cmap=\"gray\")\n",
        "    ax.set_title(f\"Frame {idx + 11}\")\n",
        "    ax.axis(\"off\")\n",
        "\n",
        "# Plot the new frames.\n",
        "new_frames = frames[10:, ...]\n",
        "for idx, ax in enumerate(axes[1]):\n",
        "    ax.imshow(np.squeeze(new_frames[idx]), cmap=\"gray\")\n",
        "    ax.set_title(f\"Frame {idx + 11}\")\n",
        "    ax.axis(\"off\")\n",
        "\n",
        "# Display the figure.\n",
        "plt.show()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "78OrJXZfx66R"
      },
      "source": [
        "## Predicted Videos\n",
        "\n",
        "Finally, we'll pick a few examples from the validation set\n",
        "and construct some GIFs with them to see the model's\n",
        "predicted videos."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ncMx34rLx66R"
      },
      "outputs": [],
      "source": [
        "# Select a few random examples from the dataset.\n",
        "examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)]\n",
        "\n",
        "# Iterate over the examples and predict the frames.\n",
        "predicted_videos = []\n",
        "for example in examples:\n",
        "    # Pick the first/last ten frames from the example.\n",
        "    frames = example[:10, ...]\n",
        "    original_frames = example[10:, ...]\n",
        "    new_predictions = np.zeros(shape=(10, *frames[0].shape))\n",
        "\n",
        "    # Predict a new set of 10 frames.\n",
        "    for i in range(10):\n",
        "        # Extract the model's prediction and post-process it.\n",
        "        frames = example[: 10 + i + 1, ...]\n",
        "        new_prediction = model.predict(np.expand_dims(frames, axis=0))\n",
        "        new_prediction = np.squeeze(new_prediction, axis=0)\n",
        "        predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n",
        "\n",
        "        # Extend the set of prediction frames.\n",
        "        new_predictions[i] = predicted_frame\n",
        "\n",
        "    # Create and save GIFs for each of the ground truth/prediction images.\n",
        "    for frame_set in [original_frames, new_predictions]:\n",
        "        # Construct a GIF from the selected video frames.\n",
        "        current_frames = np.squeeze(frame_set)\n",
        "        current_frames = current_frames[..., np.newaxis] * np.ones(3)\n",
        "        current_frames = (current_frames * 255).astype(np.uint8)\n",
        "        current_frames = list(current_frames)\n",
        "\n",
        "        # Construct a GIF from the frames.\n",
        "        with io.BytesIO() as gif:\n",
        "            imageio.mimsave(gif, current_frames, \"GIF\", fps=5)\n",
        "            predicted_videos.append(gif.getvalue())\n",
        "\n",
        "# Display the videos.\n",
        "print(\" Truth\\tPrediction\")\n",
        "for i in range(0, len(predicted_videos), 2):\n",
        "    # Construct and display an `HBox` with the ground truth and prediction.\n",
        "    box = HBox(\n",
        "        [\n",
        "            widgets.Image(value=predicted_videos[i]),\n",
        "            widgets.Image(value=predicted_videos[i + 1]),\n",
        "        ]\n",
        "    )\n",
        "    display(box)"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "collapsed_sections": [],
      "name": "conv_lstm",
      "provenance": [],
      "toc_visible": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.7.0"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}