File size: 15,505 Bytes
b800b58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "5iJqHKEQx66F"
},
"source": [
"# Next-Frame Video Prediction with Convolutional LSTMs\n",
"\n",
"**Author:** [Amogh Joshi](https://github.com/amogh7joshi)<br>\n",
"**Date created:** 2021/06/02<br>\n",
"**Last modified:** 2021/06/05<br>\n",
"**Description:** How to build and train a convolutional LSTM model for next-frame video prediction."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9vv8zp4vx66K"
},
"source": [
"## Introduction\n",
"\n",
"The\n",
"[Convolutional LSTM](https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf)\n",
"architectures bring together time series processing and computer vision by\n",
"introducing a convolutional recurrent cell in a LSTM layer. In this example, we will explore the\n",
"Convolutional LSTM model in an application to next-frame prediction, the process\n",
"of predicting what video frames come next given a series of past frames."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "daG-n305x66K"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4Xx9qttUx66L"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import tensorflow as tf\n",
"from tensorflow import keras\n",
"from tensorflow.keras import layers\n",
"\n",
"import io\n",
"import imageio\n",
"from IPython.display import Image, display\n",
"from ipywidgets import widgets, Layout, HBox"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "w-uOOdg1x66M"
},
"source": [
"## Dataset Construction\n",
"\n",
"For this example, we will be using the\n",
"[Moving MNIST](http://www.cs.toronto.edu/~nitish/unsupervised_video/)\n",
"dataset.\n",
"\n",
"We will download the dataset and then construct and\n",
"preprocess training and validation sets.\n",
"\n",
"For next-frame prediction, our model will be using a previous frame,\n",
"which we'll call `f_n`, to predict a new frame, called `f_(n + 1)`.\n",
"To allow the model to create these predictions, we'll need to process\n",
"the data such that we have \"shifted\" inputs and outputs, where the\n",
"input data is frame `x_n`, being used to predict frame `y_(n + 1)`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "H6_vt6q4x66N"
},
"outputs": [],
"source": [
"# Download and load the dataset.\n",
"fpath = keras.utils.get_file(\n",
" \"moving_mnist.npy\",\n",
" \"http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy\",\n",
")\n",
"dataset = np.load(fpath)\n",
"\n",
"# Swap the axes representing the number of frames and number of data samples.\n",
"dataset = np.swapaxes(dataset, 0, 1)\n",
"# We'll pick out 1000 of the 10000 total examples and use those.\n",
"dataset = dataset[:1000, ...]\n",
"# Add a channel dimension since the images are grayscale.\n",
"dataset = np.expand_dims(dataset, axis=-1)\n",
"\n",
"# Split into train and validation sets using indexing to optimize memory.\n",
"indexes = np.arange(dataset.shape[0])\n",
"np.random.shuffle(indexes)\n",
"train_index = indexes[: int(0.9 * dataset.shape[0])]\n",
"val_index = indexes[int(0.9 * dataset.shape[0]) :]\n",
"train_dataset = dataset[train_index]\n",
"val_dataset = dataset[val_index]\n",
"\n",
"# Normalize the data to the 0-1 range.\n",
"train_dataset = train_dataset / 255\n",
"val_dataset = val_dataset / 255\n",
"\n",
"# We'll define a helper function to shift the frames, where\n",
"# `x` is frames 0 to n - 1, and `y` is frames 1 to n.\n",
"def create_shifted_frames(data):\n",
" x = data[:, 0 : data.shape[1] - 1, :, :]\n",
" y = data[:, 1 : data.shape[1], :, :]\n",
" return x, y\n",
"\n",
"\n",
"# Apply the processing function to the datasets.\n",
"x_train, y_train = create_shifted_frames(train_dataset)\n",
"x_val, y_val = create_shifted_frames(val_dataset)\n",
"\n",
"# Inspect the dataset.\n",
"print(\"Training Dataset Shapes: \" + str(x_train.shape) + \", \" + str(y_train.shape))\n",
"print(\"Validation Dataset Shapes: \" + str(x_val.shape) + \", \" + str(y_val.shape))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wJhm7oM7x66O"
},
"source": [
"## Data Visualization\n",
"\n",
"Our data consists of sequences of frames, each of which\n",
"are used to predict the upcoming frame. Let's take a look\n",
"at some of these sequential frames."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jFE2fY1xx66O"
},
"outputs": [],
"source": [
"# Construct a figure on which we will visualize the images.\n",
"fig, axes = plt.subplots(4, 5, figsize=(10, 8))\n",
"\n",
"# Plot each of the sequential images for one random data example.\n",
"data_choice = np.random.choice(range(len(train_dataset)), size=1)[0]\n",
"for idx, ax in enumerate(axes.flat):\n",
" ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap=\"gray\")\n",
" ax.set_title(f\"Frame {idx + 1}\")\n",
" ax.axis(\"off\")\n",
"\n",
"# Print information and display the figure.\n",
"print(f\"Displaying frames for example {data_choice}.\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jPQQIUm6x66P"
},
"source": [
"## Model Construction\n",
"\n",
"To build a Convolutional LSTM model, we will use the\n",
"`ConvLSTM2D` layer, which will accept inputs of shape\n",
"`(batch_size, num_frames, width, height, channels)`, and return\n",
"a prediction movie of the same shape."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "D3OvRaVpx66P"
},
"outputs": [],
"source": [
"# Construct the input layer with no definite frame size.\n",
"inp = layers.Input(shape=(None, *x_train.shape[2:]))\n",
"\n",
"# We will construct 3 `ConvLSTM2D` layers with batch normalization,\n",
"# followed by a `Conv3D` layer for the spatiotemporal outputs.\n",
"x = layers.ConvLSTM2D(\n",
" filters=64,\n",
" kernel_size=(5, 5),\n",
" padding=\"same\",\n",
" return_sequences=True,\n",
" activation=\"relu\",\n",
")(inp)\n",
"x = layers.BatchNormalization()(x)\n",
"x = layers.ConvLSTM2D(\n",
" filters=64,\n",
" kernel_size=(3, 3),\n",
" padding=\"same\",\n",
" return_sequences=True,\n",
" activation=\"relu\",\n",
")(x)\n",
"x = layers.BatchNormalization()(x)\n",
"x = layers.ConvLSTM2D(\n",
" filters=64,\n",
" kernel_size=(1, 1),\n",
" padding=\"same\",\n",
" return_sequences=True,\n",
" activation=\"relu\",\n",
")(x)\n",
"x = layers.Conv3D(\n",
" filters=1, kernel_size=(3, 3, 3), activation=\"sigmoid\", padding=\"same\"\n",
")(x)\n",
"\n",
"# Next, we will build the complete model and compile it.\n",
"model = keras.models.Model(inp, x)\n",
"model.compile(\n",
" loss=keras.losses.binary_crossentropy, optimizer=keras.optimizers.Adam(),\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Nd0VLhrvx66Q"
},
"source": [
"## Model Training\n",
"\n",
"With our model and data constructed, we can now train the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "v9U57leux66Q"
},
"outputs": [],
"source": [
"# Define some callbacks to improve training.\n",
"early_stopping = keras.callbacks.EarlyStopping(monitor=\"val_loss\", patience=10)\n",
"reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor=\"val_loss\", patience=5)\n",
"\n",
"# Define modifiable training hyperparameters.\n",
"epochs = 20\n",
"batch_size = 5\n",
"\n",
"# Fit the model to the training data.\n",
"model.fit(\n",
" x_train,\n",
" y_train,\n",
" batch_size=batch_size,\n",
" epochs=epochs,\n",
" validation_data=(x_val, y_val),\n",
" callbacks=[early_stopping, reduce_lr],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RxB7zZIxx66R"
},
"source": [
"## Frame Prediction Visualizations\n",
"\n",
"With our model now constructed and trained, we can generate\n",
"some example frame predictions based on a new video.\n",
"\n",
"We'll pick a random example from the validation set and\n",
"then choose the first ten frames from them. From there, we can\n",
"allow the model to predict 10 new frames, which we can compare\n",
"to the ground truth frame predictions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qsujRd4Ex66R"
},
"outputs": [],
"source": [
"# Select a random example from the validation dataset.\n",
"example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]]\n",
"\n",
"# Pick the first/last ten frames from the example.\n",
"frames = example[:10, ...]\n",
"original_frames = example[10:, ...]\n",
"\n",
"# Predict a new set of 10 frames.\n",
"for _ in range(10):\n",
" # Extract the model's prediction and post-process it.\n",
" new_prediction = model.predict(np.expand_dims(frames, axis=0))\n",
" new_prediction = np.squeeze(new_prediction, axis=0)\n",
" predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n",
"\n",
" # Extend the set of prediction frames.\n",
" frames = np.concatenate((frames, predicted_frame), axis=0)\n",
"\n",
"# Construct a figure for the original and new frames.\n",
"fig, axes = plt.subplots(2, 10, figsize=(20, 4))\n",
"\n",
"# Plot the original frames.\n",
"for idx, ax in enumerate(axes[0]):\n",
" ax.imshow(np.squeeze(original_frames[idx]), cmap=\"gray\")\n",
" ax.set_title(f\"Frame {idx + 11}\")\n",
" ax.axis(\"off\")\n",
"\n",
"# Plot the new frames.\n",
"new_frames = frames[10:, ...]\n",
"for idx, ax in enumerate(axes[1]):\n",
" ax.imshow(np.squeeze(new_frames[idx]), cmap=\"gray\")\n",
" ax.set_title(f\"Frame {idx + 11}\")\n",
" ax.axis(\"off\")\n",
"\n",
"# Display the figure.\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "78OrJXZfx66R"
},
"source": [
"## Predicted Videos\n",
"\n",
"Finally, we'll pick a few examples from the validation set\n",
"and construct some GIFs with them to see the model's\n",
"predicted videos."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ncMx34rLx66R"
},
"outputs": [],
"source": [
"# Select a few random examples from the dataset.\n",
"examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)]\n",
"\n",
"# Iterate over the examples and predict the frames.\n",
"predicted_videos = []\n",
"for example in examples:\n",
" # Pick the first/last ten frames from the example.\n",
" frames = example[:10, ...]\n",
" original_frames = example[10:, ...]\n",
" new_predictions = np.zeros(shape=(10, *frames[0].shape))\n",
"\n",
" # Predict a new set of 10 frames.\n",
" for i in range(10):\n",
" # Extract the model's prediction and post-process it.\n",
" frames = example[: 10 + i + 1, ...]\n",
" new_prediction = model.predict(np.expand_dims(frames, axis=0))\n",
" new_prediction = np.squeeze(new_prediction, axis=0)\n",
" predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)\n",
"\n",
" # Extend the set of prediction frames.\n",
" new_predictions[i] = predicted_frame\n",
"\n",
" # Create and save GIFs for each of the ground truth/prediction images.\n",
" for frame_set in [original_frames, new_predictions]:\n",
" # Construct a GIF from the selected video frames.\n",
" current_frames = np.squeeze(frame_set)\n",
" current_frames = current_frames[..., np.newaxis] * np.ones(3)\n",
" current_frames = (current_frames * 255).astype(np.uint8)\n",
" current_frames = list(current_frames)\n",
"\n",
" # Construct a GIF from the frames.\n",
" with io.BytesIO() as gif:\n",
" imageio.mimsave(gif, current_frames, \"GIF\", fps=5)\n",
" predicted_videos.append(gif.getvalue())\n",
"\n",
"# Display the videos.\n",
"print(\" Truth\\tPrediction\")\n",
"for i in range(0, len(predicted_videos), 2):\n",
" # Construct and display an `HBox` with the ground truth and prediction.\n",
" box = HBox(\n",
" [\n",
" widgets.Image(value=predicted_videos[i]),\n",
" widgets.Image(value=predicted_videos[i + 1]),\n",
" ]\n",
" )\n",
" display(box)"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "conv_lstm",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |