deep-dream / app.py
joheras's picture
app.py
7e0e519
import gradio as gr
from huggingface_hub import from_pretrained_keras
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.applications import inception_v3
model = from_pretrained_keras("keras-io/deep-dream")
#base_image_path = keras.utils.get_file("sky.jpg", "https://i.imgur.com/aGBdQyK.jpg")
result_prefix = "dream"
# These are the names of the layers
# for which we try to maximize activation,
# as well as their weight in the final loss
# we try to maximize.
# You can tweak these setting to obtain new visual effects.
layer_settings = {
"mixed4": 1.0,
"mixed5": 1.5,
"mixed6": 2.0,
"mixed7": 2.5,
}
# Playing with these hyperparameters will also allow you to achieve new effects
step = 0.01 # Gradient ascent step size
num_octave = 3 # Number of scales at which to run gradient ascent
octave_scale = 1.4 # Size ratio between scales
#iterations = 20 # Number of ascent steps per scale
max_loss = 15.0
def preprocess_image(img):
# Util function to open, resize and format pictures
# into appropriate arrays.
#img = keras.preprocessing.image.load_img(image_path)
#img = keras.preprocessing.image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = inception_v3.preprocess_input(img)
return img
def deprocess_image(x):
# Util function to convert a NumPy array into a valid image.
x = x.reshape((x.shape[1], x.shape[2], 3))
# Undo inception v3 preprocessing
x /= 2.0
x += 0.5
x *= 255.0
# Convert to uint8 and clip to the valid range [0, 255]
x = np.clip(x, 0, 255).astype("uint8")
return x
# Get the symbolic outputs of each "key" layer (we gave them unique names).
outputs_dict = dict(
[
(layer.name, layer.output)
for layer in [model.get_layer(name) for name in layer_settings.keys()]
]
)
# Set up a model that returns the activation values for every target layer
# (as a dict)
feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict)
def compute_loss(input_image):
features = feature_extractor(input_image)
# Initialize the loss
loss = tf.zeros(shape=())
for name in features.keys():
coeff = layer_settings[name]
activation = features[name]
# We avoid border artifacts by only involving non-border pixels in the loss.
scaling = tf.reduce_prod(tf.cast(tf.shape(activation), "float32"))
loss += coeff * tf.reduce_sum(tf.square(activation[:, 2:-2, 2:-2, :])) / scaling
return loss
def gradient_ascent_step(img, learning_rate):
with tf.GradientTape() as tape:
tape.watch(img)
loss = compute_loss(img)
# Compute gradients.
grads = tape.gradient(loss, img)
# Normalize gradients.
grads /= tf.maximum(tf.reduce_mean(tf.abs(grads)), 1e-6)
img += learning_rate * grads
return loss, img
def gradient_ascent_loop(img, iterations, learning_rate, max_loss=None):
for i in range(iterations):
loss, img = gradient_ascent_step(img, learning_rate)
if max_loss is not None and loss > max_loss:
break
print("... Loss value at step %d: %.2f" % (i, loss))
return img
def process_image(img,iterations):
original_img = preprocess_image(img)
original_shape = original_img.shape[1:3]
successive_shapes = [original_shape]
for i in range(1, num_octave):
shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
successive_shapes.append(shape)
successive_shapes = successive_shapes[::-1]
shrunk_original_img = tf.image.resize(original_img, successive_shapes[0])
img = tf.identity(original_img) # Make a copy
for i, shape in enumerate(successive_shapes):
print("Processing octave %d with shape %s" % (i, shape))
img = tf.image.resize(img, shape)
img = gradient_ascent_loop(
img, iterations=iterations, learning_rate=step, max_loss=max_loss
)
upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape)
same_size_original = tf.image.resize(original_img, shape)
lost_detail = same_size_original - upscaled_shrunk_original_img
img += lost_detail
shrunk_original_img = tf.image.resize(original_img, shape)
return deprocess_image(img.numpy())
image = gr.inputs.Image()
slider = gr.inputs.Slider(minimum=5, maximum=30, step=1, default=20, label="Number of ascent steps per scale")
label = gr.outputs.Image()
iface = gr.Interface(process_image,[image,slider],label,
#outputs=[
# gr.outputs.Textbox(label="Engine issue"),
# gr.outputs.Textbox(label="Engine issue score")],
examples=[["sky.jpg",5]], title="Deep dream",
description = "Model for applying Deep Dream to an image.",
article = "Author: <a href=\"https://huggingface.co/joheras\">Jónathan Heras</a>"
# examples = ["sample.csv"],
)
iface.launch()