joheras commited on
Commit
b76b1ae
·
1 Parent(s): 2633e7c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +138 -0
app.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import from_pretrained_keras
2
+ import numpy as np
3
+ import tensorflow as tf
4
+ from tensorflow import keras
5
+ from tensorflow.keras.applications import inception_v3
6
+
7
+ model = from_pretrained_keras("keras-io/deep-dream")
8
+
9
+ #base_image_path = keras.utils.get_file("sky.jpg", "https://i.imgur.com/aGBdQyK.jpg")
10
+ result_prefix = "dream"
11
+
12
+ # These are the names of the layers
13
+ # for which we try to maximize activation,
14
+ # as well as their weight in the final loss
15
+ # we try to maximize.
16
+ # You can tweak these setting to obtain new visual effects.
17
+ layer_settings = {
18
+ "mixed4": 1.0,
19
+ "mixed5": 1.5,
20
+ "mixed6": 2.0,
21
+ "mixed7": 2.5,
22
+ }
23
+
24
+ # Playing with these hyperparameters will also allow you to achieve new effects
25
+ step = 0.01 # Gradient ascent step size
26
+ num_octave = 3 # Number of scales at which to run gradient ascent
27
+ octave_scale = 1.4 # Size ratio between scales
28
+ iterations = 20 # Number of ascent steps per scale
29
+ max_loss = 15.0
30
+
31
+ def preprocess_image(image_path):
32
+ # Util function to open, resize and format pictures
33
+ # into appropriate arrays.
34
+ img = keras.preprocessing.image.load_img(image_path)
35
+ img = keras.preprocessing.image.img_to_array(img)
36
+ img = np.expand_dims(img, axis=0)
37
+ img = inception_v3.preprocess_input(img)
38
+ return img
39
+
40
+
41
+ def deprocess_image(x):
42
+ # Util function to convert a NumPy array into a valid image.
43
+ x = x.reshape((x.shape[1], x.shape[2], 3))
44
+ # Undo inception v3 preprocessing
45
+ x /= 2.0
46
+ x += 0.5
47
+ x *= 255.0
48
+ # Convert to uint8 and clip to the valid range [0, 255]
49
+ x = np.clip(x, 0, 255).astype("uint8")
50
+ return x
51
+
52
+ # Get the symbolic outputs of each "key" layer (we gave them unique names).
53
+ outputs_dict = dict(
54
+ [
55
+ (layer.name, layer.output)
56
+ for layer in [model.get_layer(name) for name in layer_settings.keys()]
57
+ ]
58
+ )
59
+
60
+ # Set up a model that returns the activation values for every target layer
61
+ # (as a dict)
62
+ feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict)
63
+
64
+ def compute_loss(input_image):
65
+ features = feature_extractor(input_image)
66
+ # Initialize the loss
67
+ loss = tf.zeros(shape=())
68
+ for name in features.keys():
69
+ coeff = layer_settings[name]
70
+ activation = features[name]
71
+ # We avoid border artifacts by only involving non-border pixels in the loss.
72
+ scaling = tf.reduce_prod(tf.cast(tf.shape(activation), "float32"))
73
+ loss += coeff * tf.reduce_sum(tf.square(activation[:, 2:-2, 2:-2, :])) / scaling
74
+ return loss
75
+
76
+ def gradient_ascent_step(img, learning_rate):
77
+ with tf.GradientTape() as tape:
78
+ tape.watch(img)
79
+ loss = compute_loss(img)
80
+ # Compute gradients.
81
+ grads = tape.gradient(loss, img)
82
+ # Normalize gradients.
83
+ grads /= tf.maximum(tf.reduce_mean(tf.abs(grads)), 1e-6)
84
+ img += learning_rate * grads
85
+ return loss, img
86
+
87
+
88
+ def gradient_ascent_loop(img, iterations, learning_rate, max_loss=None):
89
+ for i in range(iterations):
90
+ loss, img = gradient_ascent_step(img, learning_rate)
91
+ if max_loss is not None and loss > max_loss:
92
+ break
93
+ print("... Loss value at step %d: %.2f" % (i, loss))
94
+ return img
95
+
96
+
97
+ def process_image(imgPath):
98
+ original_img = preprocess_image(base_image_path)
99
+ original_shape = original_img.shape[1:3]
100
+
101
+ successive_shapes = [original_shape]
102
+ for i in range(1, num_octave):
103
+ shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape])
104
+ successive_shapes.append(shape)
105
+ successive_shapes = successive_shapes[::-1]
106
+ shrunk_original_img = tf.image.resize(original_img, successive_shapes[0])
107
+
108
+ img = tf.identity(original_img) # Make a copy
109
+ for i, shape in enumerate(successive_shapes):
110
+ print("Processing octave %d with shape %s" % (i, shape))
111
+ img = tf.image.resize(img, shape)
112
+ img = gradient_ascent_loop(
113
+ img, iterations=iterations, learning_rate=step, max_loss=max_loss
114
+ )
115
+ upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape)
116
+ same_size_original = tf.image.resize(original_img, shape)
117
+ lost_detail = same_size_original - upscaled_shrunk_original_img
118
+
119
+ img += lost_detail
120
+ shrunk_original_img = tf.image.resize(original_img, shape)
121
+
122
+ return deprocess_image(img.numpy())
123
+
124
+ image = gr.inputs.Image()
125
+ label = gr.outputs.Image()
126
+
127
+ iface = gr.Interface(classify_image,image,label,
128
+ #outputs=[
129
+ # gr.outputs.Textbox(label="Engine issue"),
130
+ # gr.outputs.Textbox(label="Engine issue score")],
131
+ examples=["sky.jpg"], title="Image classification on CIFAR-100",
132
+ description = "Model for classifying images from the CIFAR dataset using a vision transformer trained with small data.",
133
+ article = "Author: <a href=\"https://huggingface.co/joheras\">Jónathan Heras</a>"
134
+ # examples = ["sample.csv"],
135
+ )
136
+
137
+
138
+ iface.launch()