from huggingface_hub import from_pretrained_keras import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.applications import inception_v3 model = from_pretrained_keras("keras-io/deep-dream") #base_image_path = keras.utils.get_file("sky.jpg", "https://i.imgur.com/aGBdQyK.jpg") result_prefix = "dream" # These are the names of the layers # for which we try to maximize activation, # as well as their weight in the final loss # we try to maximize. # You can tweak these setting to obtain new visual effects. layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } # Playing with these hyperparameters will also allow you to achieve new effects step = 0.01 # Gradient ascent step size num_octave = 3 # Number of scales at which to run gradient ascent octave_scale = 1.4 # Size ratio between scales iterations = 20 # Number of ascent steps per scale max_loss = 15.0 def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate arrays. img = keras.preprocessing.image.load_img(image_path) img = keras.preprocessing.image.img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img def deprocess_image(x): # Util function to convert a NumPy array into a valid image. x = x.reshape((x.shape[1], x.shape[2], 3)) # Undo inception v3 preprocessing x /= 2.0 x += 0.5 x *= 255.0 # Convert to uint8 and clip to the valid range [0, 255] x = np.clip(x, 0, 255).astype("uint8") return x # Get the symbolic outputs of each "key" layer (we gave them unique names). outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) # Set up a model that returns the activation values for every target layer # (as a dict) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) def compute_loss(input_image): features = feature_extractor(input_image) # Initialize the loss loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] # We avoid border artifacts by only involving non-border pixels in the loss. scaling = tf.reduce_prod(tf.cast(tf.shape(activation), "float32")) loss += coeff * tf.reduce_sum(tf.square(activation[:, 2:-2, 2:-2, :])) / scaling return loss def gradient_ascent_step(img, learning_rate): with tf.GradientTape() as tape: tape.watch(img) loss = compute_loss(img) # Compute gradients. grads = tape.gradient(loss, img) # Normalize gradients. grads /= tf.maximum(tf.reduce_mean(tf.abs(grads)), 1e-6) img += learning_rate * grads return loss, img def gradient_ascent_loop(img, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, img = gradient_ascent_step(img, learning_rate) if max_loss is not None and loss > max_loss: break print("... Loss value at step %d: %.2f" % (i, loss)) return img def process_image(imgPath): original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) # Make a copy for i, shape in enumerate(successive_shapes): print("Processing octave %d with shape %s" % (i, shape)) img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) return deprocess_image(img.numpy()) image = gr.inputs.Image() label = gr.outputs.Image() iface = gr.Interface(classify_image,image,label, #outputs=[ # gr.outputs.Textbox(label="Engine issue"), # gr.outputs.Textbox(label="Engine issue score")], examples=["sky.jpg"], title="Image classification on CIFAR-100", description = "Model for classifying images from the CIFAR dataset using a vision transformer trained with small data.", article = "Author: Jónathan Heras" # examples = ["sample.csv"], ) iface.launch()