Spaces:
Runtime error
Runtime error
Commit
·
50774a6
1
Parent(s):
e3b915c
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,11 @@ import tensorflow as tf
|
|
2 |
import huggingface_hub as hf_hub
|
3 |
import gradio as gr
|
4 |
|
5 |
-
num_rows =
|
6 |
-
num_cols =
|
7 |
num_images = num_rows * num_cols
|
8 |
image_size = 64
|
9 |
-
plot_image_size =
|
10 |
|
11 |
model = hf_hub.from_pretrained_keras("beresandras/denoising-diffusion-models")
|
12 |
|
@@ -23,7 +23,7 @@ def diffusion_schedule(diffusion_times, min_signal_rate, max_signal_rate):
|
|
23 |
|
24 |
def generate_images(diffusion_steps, stochasticity, min_signal_rate, max_signal_rate):
|
25 |
step_size = 1.0 / diffusion_steps
|
26 |
-
initial_noise = tf.random.normal(shape=(num_images, image_size, image_size, 3)
|
27 |
|
28 |
# reverse diffusion
|
29 |
noisy_images = initial_noise
|
@@ -64,7 +64,7 @@ inputs = [
|
|
64 |
gr.inputs.Slider(0.80, 0.95, step=0.01, default=0.95, label="Maximal signal rate"),
|
65 |
]
|
66 |
output = gr.outputs.Image(label="Generated images")
|
67 |
-
examples = [[
|
68 |
title = "Denoising Diffusion Implicit Models"
|
69 |
article = "<div style='text-align: center;'>Keras code example and demo by <a href='https://www.linkedin.com/in/andras-beres-789190210' target='_blank'>András Béres</a></div>"
|
70 |
gr.Interface(
|
|
|
2 |
import huggingface_hub as hf_hub
|
3 |
import gradio as gr
|
4 |
|
5 |
+
num_rows = 4
|
6 |
+
num_cols = 2
|
7 |
num_images = num_rows * num_cols
|
8 |
image_size = 64
|
9 |
+
plot_image_size = 128
|
10 |
|
11 |
model = hf_hub.from_pretrained_keras("beresandras/denoising-diffusion-models")
|
12 |
|
|
|
23 |
|
24 |
def generate_images(diffusion_steps, stochasticity, min_signal_rate, max_signal_rate):
|
25 |
step_size = 1.0 / diffusion_steps
|
26 |
+
initial_noise = tf.random.normal(shape=(num_images, image_size, image_size, 3))
|
27 |
|
28 |
# reverse diffusion
|
29 |
noisy_images = initial_noise
|
|
|
64 |
gr.inputs.Slider(0.80, 0.95, step=0.01, default=0.95, label="Maximal signal rate"),
|
65 |
]
|
66 |
output = gr.outputs.Image(label="Generated images")
|
67 |
+
examples = [[3, 0.0, 0.02, 0.95], [10, 0.0, 0.02, 0.95], [20, 1.0, 0.02, 0.95]]
|
68 |
title = "Denoising Diffusion Implicit Models"
|
69 |
article = "<div style='text-align: center;'>Keras code example and demo by <a href='https://www.linkedin.com/in/andras-beres-789190210' target='_blank'>András Béres</a></div>"
|
70 |
gr.Interface(
|