import numpy as np import tensorflow as tf import gradio as gr from huggingface_hub import from_pretrained_keras import cv2 img_size = 28 model = from_pretrained_keras("keras-io/keras-reptile") def read_image(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = tf.image.resize(images=image, size=[img_size, img_size]) return image def infer(model, image): predictions = model.predict(image) def display_result(input_image): image_tensor = read_image(input_image) prediction_label = infer(model=model, image=image) return prediction_label input = gr.inputs.Image() examples = [["./example0.JPG"], ["./example1.JPG"]] title = "Few shot learning" description = "Upload an image or select from examples to classify fashion items." gr.Interface(display_result, input, outputs="text", examples=examples, allow_flagging=False, analytics_enabled=False, title=title, description=description).launch(enable_queue=True) gr.launch()