import gradio as gr import numpy as np import tensorflow as tf from tensorflow import keras from huggingface_hub import from_pretrained_keras result_prefix = "paris_generated" # Weights of the different loss components total_variation_weight = 1e-6 style_weight = 1e-6 content_weight = 2.5e-8 # Dimensions of the generated picture. width, height = keras.preprocessing.image.load_img(base_image_path).size img_nrows = 400 img_ncols = int(width * img_nrows / height) # Build a VGG19 model loaded with pre-trained ImageNet weights model = from_pretrained_keras("rushic24/keras-VGG19") # Get the symbolic outputs of each "key" layer (we gave them unique names). outputs_dict = dict([(layer.name, layer.output) for layer in model.layers]) # Set up a model that returns the activation values for every layer in # VGG19 (as a dict). feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) # List of layers to use for the style loss. style_layer_names = [ "block1_conv1", "block2_conv1", "block3_conv1", "block4_conv1", "block5_conv1", ] # The layer to use for the content loss. content_layer_name = "block5_conv2" @tf.function def compute_loss_and_grads(combination_image, base_image, style_reference_image): with tf.GradientTape() as tape: loss = compute_loss(combination_image, base_image, style_reference_image) grads = tape.gradient(loss, combination_image) return loss, grads optimizer = keras.optimizers.SGD( keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=100.0, decay_steps=100, decay_rate=0.96 ) ) def get_imgs(base_image_path, style_reference_image_path): base_image = preprocess_image(base_image_path) style_reference_image = preprocess_image(style_reference_image_path) combination_image = tf.Variable(preprocess_image(base_image_path)) iterations = 400 for i in range(1, iterations + 1): loss, grads = compute_loss_and_grads(combination_image, base_image, style_reference_image) optimizer.apply_gradients([(grads, combination_image)]) if i % 100 == 0: print("Iteration %d: loss=%.2f" % (i, loss)) img = deprocess_image(combination_image.numpy()) return img title = "Neural style transfer" description = "Gradio Demo for Neural style transfer. To use it, simply upload a base image and a style image" content = gr.inputs.Image(shape=None, image_mode="RGB", invert_colors=False, source="upload", tool="editor", type="filepath", label=None, optional=False) style = gr.inputs.Image(shape=None, image_mode="RGB", invert_colors=False, source="upload", tool="editor", type="filepath", label=None, optional=False) gr.Interface(get_imgs, inputs=[content, style], outputs=["image"], title=title, description=description, examples=[["base.jpg", "style.jpg"]]).launch(enable_queue=True)