# import the necessary packages from utilities import config from tensorflow.keras import layers from tensorflow import keras import tensorflow as tf import matplotlib.pyplot as plt import math import gradio as gr # load the models from disk conv_stem = keras.models.load_model( config.IMAGENETTE_STEM_PATH, compile=False ) conv_trunk = keras.models.load_model( config.IMAGENETTE_TRUNK_PATH, compile=False ) conv_attn = keras.models.load_model( config.IMAGENETTE_ATTN_PATH, compile=False ) def plot_attention(image): # resize the image to a 224, 224 dim image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.resize(image, (224, 224)) image = image[tf.newaxis, ...] # pass through the stem test_x = conv_stem(image) # pass through the trunk test_x = conv_trunk(test_x) # pass through the attention pooling block _, test_viz_weights = conv_attn(test_x) test_viz_weights = test_viz_weights[tf.newaxis, ...] # reshape the vizualization weights num_patches = tf.shape(test_viz_weights)[-1] height = width = int(math.sqrt(num_patches)) test_viz_weights = layers.Reshape((height, width))(test_viz_weights) index = 0 selected_image = image[index] selected_weight = test_viz_weights[index] fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) ax[0].imshow(selected_image) ax[0].set_title(f"Original") ax[0].axis("off") img = ax[1].imshow(selected_image) ax[1].imshow(selected_weight, cmap='inferno', alpha=0.6, extent=img.get_extent()) ax[1].set_title(f"Attended") ax[1].axis("off") plt.axis("off") return plt iface = gr.Interface( fn=plot_attention, inputs=[gr.inputs.Image(label="Input Image")], outputs="image").launch()