Spaces:
Runtime error
Runtime error
import gradio as gr | |
from utils.predict import predict, predict_batch | |
import os | |
import glob | |
##Create list of examples to be loaded | |
example_list = glob.glob("examples/set2/*") | |
example_list = list(map(lambda el:[el], example_list)) | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# **<p align='center'>ShiftViT: A Vision Transformer without Attention</p>**") | |
gr.Markdown("This space demonstrates the use of ShiftViT proposed in the paper: <a href=\"https://arxiv.org/abs/2201.10801/\">When Shift Operation Meets Vision Transformer: An Extremely Simple Alternative to Attention Mechanism</a> for image classification task.") | |
gr.Markdown("Vision Transformers have lately become very popular for computer vision problems and a lot researchers attribute their success to the attention layers.") | |
gr.Markdown("The authors of the ShiftViT paper have tried to show via the ShiftViT model that even without the attention operation, ViTs can reach SoTA results.") | |
with gr.Tabs(): | |
with gr.TabItem("Batch Predict"): | |
gr.Markdown("Just click *Run Model* below:") | |
with gr.Box(): | |
gr.Markdown("**Top 3 Predictions** \n") | |
output_df = gr.Dataframe(headers=["image","first", "second","third"],datatype=["str", "str", "str", "str"], label="Model Output") | |
gr.Markdown("**Output Plot** \n") | |
output_plot = gr.Image(type='filepath') | |
gr.Markdown("**Predict**") | |
with gr.Box(): | |
with gr.Row(): | |
compute_button = gr.Button("Run Model") | |
with gr.TabItem("Upload & Predict"): | |
with gr.Box(): | |
with gr.Row(): | |
input_image = gr.Image(type='filepath',label="Input Image", show_label=True) | |
output_label = gr.Label(label="Model", show_label=True) | |
gr.Markdown("**Predict**") | |
with gr.Box(): | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
gr.Markdown("**Examples:**") | |
gr.Markdown("The model is trained to classify images belonging to the following classes:") | |
with gr.Column(): | |
gr.Examples(example_list, [input_image], output_label, predict, cache_examples=True) | |
compute_button.click(predict_batch, inputs=input_image, outputs=[output_plot,output_df]) | |
submit_button.click(predict, inputs=input_image, outputs=output_label) | |
gr.Markdown('\n Demo created by: <a href=\"https://www.linkedin.com/in/shivalika-singh/\">Shivalika Singh</a> <br> Based on this <a href=\"https://keras.io/examples/vision/shiftvit/\">Keras example</a> by <a href=\"https://twitter.com/ariG23498\">Aritra Roy Gosthipaty</a> and <a href=\"https://twitter.com/ritwik_raha\">Ritwik Raha</a> <br> Demo Powered by this <a href=\"https://huggingface.co/shivi/shiftvit/\">ShiftViT model</a>') | |
demo.launch() | |