shivalikasingh commited on
Commit
85c68e5
·
1 Parent(s): 34c6949

updated examples loading

Browse files
Files changed (1) hide show
  1. app.py +12 -11
app.py CHANGED
@@ -1,21 +1,18 @@
1
  import gradio as gr
2
  from utils.predict import predict, predict_batch
3
  import os
4
-
5
  inputs_list = []
6
 
7
 
8
  demo = gr.Blocks()
 
 
 
 
9
 
10
- # sample_1 = ['examples/ship.png']
11
- # sample_2 = ['examples/deer.jpg']
12
- # sample_image = gr.Image(type='filepath')
13
- # examples = gr.components.Dataset(components=[sample_image], samples=[sample_1, sample_2], type='values')
14
- # with gr.Column():
15
- # examples.render()
16
- # examples.click(load_example, examples, input_images)
17
- # def load_example(image):
18
- # return image[0]
19
 
20
  with demo:
21
 
@@ -58,8 +55,12 @@ with demo:
58
  gr.Markdown("**Examples:**")
59
  gr.Markdown("The model is trained to classify images belonging to the following classes:")
60
 
 
 
 
61
  with gr.Column():
62
- gr.Examples("examples/set2", [input_image], output_label, predict, cache_examples=True)
 
63
 
64
 
65
  compute_button.click(predict_batch, inputs=input_image, outputs=[output_plot,output_df])
 
1
  import gradio as gr
2
  from utils.predict import predict, predict_batch
3
  import os
4
+ import glob
5
  inputs_list = []
6
 
7
 
8
  demo = gr.Blocks()
9
+ example_list = glob.glob("examples/set2/*")
10
+ example_list = list(map(lambda el:[el], example_list))
11
+ sample_image = gr.Image(type='filepath')
12
+ examples = gr.components.Dataset(components=[sample_image], samples=example_list, type='values')
13
 
14
+ def load_example(image):
15
+ return image[0]
 
 
 
 
 
 
 
16
 
17
  with demo:
18
 
 
55
  gr.Markdown("**Examples:**")
56
  gr.Markdown("The model is trained to classify images belonging to the following classes:")
57
 
58
+ # with gr.Column():
59
+ # gr.Examples("examples/set2", [input_image], output_label, predict, cache_examples=True)
60
+
61
  with gr.Column():
62
+ examples.render()
63
+ examples.click(load_example, examples, input_image)
64
 
65
 
66
  compute_button.click(predict_batch, inputs=input_image, outputs=[output_plot,output_df])