buio commited on
Commit
f4211cc
·
1 Parent(s): 817f56c

added working examples

Browse files
Files changed (1) hide show
  1. app.py +13 -9
app.py CHANGED
@@ -31,6 +31,8 @@ def convert_and_predict(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exa
31
  return f'{predictions[0][0]:.2%}'
32
 
33
 
 
 
34
  inputs = [
35
  gr.Slider(minimum=1, maximum=120, step=1, label='age', value=60),
36
  gr.Radio(choices=['female','male'], label='sex', type='index',value='male'),
@@ -48,20 +50,22 @@ inputs = [
48
  gr.Radio(choices=['no','yes',], type='index', label='exercise induced angina',value='no'),
49
  gr.Number(label='ST depression induced by exercise relative to rest', value=2.3),
50
  gr.Radio(choices=['psloping','flat','downsloping'], label='slope of the peak exercise ST segment', type='index', value='downsloping'),
51
- gr.Number(minimum=0, maximum=3, label ='number of major vessels (0-3) colored by flourosopy',value=0),
52
  gr.Radio(['normal','fixed','reversable'],label ='thal', value='fixed')
53
  ]
54
 
 
55
  # the app outputs text
56
  output = gr.Textbox(label='Probability of having a heart disease, as evaluated by our model:')
57
  # it's good practice to pass examples, description and a title to guide users
58
- examples = []
59
- title = "Heart Disease Classification"
60
- description = "Play with the clinical values or select examples below"
61
- #examples = [[63, 1, 1, 145, 233, 1, 2, 150, 0, 2.3, 3, 0, 'fixed'],
62
- # [67, 1, 4, 160, 286, 0, 2, 108, 1, 1.5, 2, 3, 'normal'],
63
- # [67, 1, 4, 120, 229, 0, 2, 129, 1, 2.6, 2, 2, 'reversible']]
64
 
65
- gr.Interface(convert_and_predict, inputs, output,
66
- allow_flagging=False,
 
 
 
 
67
  title=title, description=description).launch()
 
31
  return f'{predictions[0][0]:.2%}'
32
 
33
 
34
+ # the app uses slider and number fields for numerical inputs
35
+ # while radio buttons for the categoricals
36
  inputs = [
37
  gr.Slider(minimum=1, maximum=120, step=1, label='age', value=60),
38
  gr.Radio(choices=['female','male'], label='sex', type='index',value='male'),
 
50
  gr.Radio(choices=['no','yes',], type='index', label='exercise induced angina',value='no'),
51
  gr.Number(label='ST depression induced by exercise relative to rest', value=2.3),
52
  gr.Radio(choices=['psloping','flat','downsloping'], label='slope of the peak exercise ST segment', type='index', value='downsloping'),
53
+ gr.Number(label ='number of major vessels (0-3) colored by flourosopy',value=0),
54
  gr.Radio(['normal','fixed','reversable'],label ='thal', value='fixed')
55
  ]
56
 
57
+
58
  # the app outputs text
59
  output = gr.Textbox(label='Probability of having a heart disease, as evaluated by our model:')
60
  # it's good practice to pass examples, description and a title to guide users
61
+ title = "Heart Disease Classification 🩺❤️"
62
+ description = """
63
+ Binary classification of structured data including numerical and categorical features.
 
 
 
64
 
65
+ """
66
+ article = "Author: <a href=\"https://huggingface.co/buio\">Marco Buiani</a>. Based on the keras example from <a href=\"https://keras.io/examples/structured_data/structured_data_classification_from_scratch/\">François Chollet</a> \n Model Link: https://huggingface.co/buio/structured-data-classification",
67
+ examples = [[41, 'female', 'atypical angina', 130, 204, 100, 'normal', 150, 'yes', 1.4, 'psloping', 2, 'reversible'],
68
+ [63, 'male', 'typical angina', 145, 233, 150, 'T-T wave abnormality', 150, 'no', 2.3, 'flat', 0, 'fixed']]
69
+
70
+ gr.Interface(convert_and_predict, inputs, output, examples= examples, allow_flagging='never',
71
  title=title, description=description).launch()