Spaces:
Sleeping
Sleeping
File size: 5,724 Bytes
202eff6 6ba63c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Dict
from torch import nn
from detectron2.layers import ShapeSpec
from .build import register_body
from ..vision.encoder import build_encoder
from ..interface import build_decoder
from ..utils import configurable
class XdecoderHead(nn.Module):
@configurable
def __init__(
self,
input_shape: Dict[str, ShapeSpec],
*,
num_classes: int,
pixel_decoder: nn.Module,
loss_weight: float = 1.0,
ignore_value: int = -1,
# extra parameters
transformer_predictor: nn.Module,
transformer_in_feature: str,
binary_classes: bool,
):
"""
NOTE: this interface is experimental.
Args:
input_shape: shapes (channels and stride) of the input features
num_classes: number of classes to predict
pixel_decoder: the pixel decoder module
loss_weight: loss weight
ignore_value: category id to be ignored during training.
transformer_predictor: the transformer decoder that makes prediction
transformer_in_feature: input feature name to the transformer_predictor
"""
super().__init__()
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
self.in_features = [k for k, v in input_shape]
feature_strides = [v.stride for k, v in input_shape]
feature_channels = [v.channels for k, v in input_shape]
self.ignore_value = ignore_value
self.common_stride = 4
self.loss_weight = loss_weight
self.pixel_decoder = pixel_decoder
self.predictor = transformer_predictor
self.transformer_in_feature = transformer_in_feature
self.num_classes = num_classes
if binary_classes:
self.num_classes = 1
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec], lang_encoder: nn.Module, extra: dict):
in_features_type = cfg['MODEL']['DECODER']['TRANSFORMER_IN_FEATURE']
enc_cfg = cfg['MODEL']['ENCODER']
dec_cfg = cfg['MODEL']['DECODER']
# figure out in_channels to transformer predictor
if in_features_type == "transformer_encoder":
transformer_predictor_in_channels = enc_cfg['CONVS_DIM']
elif in_features_type == "pixel_embedding":
transformer_predictor_in_channels = enc_cfg['MASK_DIM']
elif in_features_type == "multi_scale_pixel_decoder":
transformer_predictor_in_channels = enc_cfg['CONVS_DIM']
else:
transformer_predictor_in_channels = input_shape[dec_cfg['TRANSFORMER_IN_FEATURE']].channels
return {
"input_shape": {
k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES']
},
"ignore_value": enc_cfg['IGNORE_VALUE'],
"num_classes": enc_cfg.get('NUM_CLASSES', None),
"pixel_decoder": build_encoder(cfg, input_shape),
"loss_weight": enc_cfg['LOSS_WEIGHT'],
"transformer_in_feature": dec_cfg['TRANSFORMER_IN_FEATURE'],
"transformer_predictor": build_decoder(
cfg,
transformer_predictor_in_channels,
lang_encoder,
mask_classification=True,
extra=extra,
),
"binary_classes": enc_cfg['BINARY_CLASSES']
}
def forward(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
return self.layers(features, mask, target_queries, target_vlp, task, extra)
def layers(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features)
if self.transformer_in_feature == "multi_scale_pixel_decoder":
predictions = self.predictor(multi_scale_features, mask_features, mask, target_queries, target_vlp, task, extra)
else:
if self.transformer_in_feature == "transformer_encoder":
assert (
transformer_encoder_features is not None
), "Please use the TransformerEncoderPixelDecoder."
predictions = self.predictor(transformer_encoder_features, mask_features, mask)
elif self.transformer_in_feature == "pixel_embedding":
predictions = self.predictor(mask_features, mask_features, mask)
else:
predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask)
return predictions
@register_body
def get_xdecoder_head(cfg, input_shape, lang_encoder, extra):
return XdecoderHead(cfg, input_shape, lang_encoder, extra) |