BiomedParse / main.py
kernel-luso-comfort's picture
Rename init_predict_mock.py to model_mock.py and update main.py to use the Model class for predictions
f50a656
raw
history blame
4.95 kB
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from pathlib import Path
from typing import Dict, List
from inference_utils.target_dist import modality_targets_from_target_dist
# If True, then mock init_model() and predict() functions will be used.
DEV_MODE = True if os.getenv("DEV_MODE") else False
import gradio as gr
if DEV_MODE:
from inference_utils.model_mock import Model
else:
from inference_utils.model import Model
gr.set_static_paths(["assets"])
description = """Upload a biomedical image and enter prompts (separated by commas) to detect specific features.
The model understands these prompts:
![gpt4_ontology_hierarchy.png](file/assets/gpt4_ontology_hierarchy.png)
Above figure is from the [BiomedParse paper](https://arxiv.org/abs/2405.12971).
The model understands these types of biomedical images:
- [Computed Tomography (CT)](https://en.wikipedia.org/wiki/Computed_tomography)
- [Magnetic Resonance Imaging (MRI)](https://en.wikipedia.org/wiki/Magnetic_resonance_imaging)
- [X-ray](https://en.wikipedia.org/wiki/X-ray)
- [Medical Ultrasound](https://en.wikipedia.org/wiki/Medical_ultrasound)
- [Pathology](https://en.wikipedia.org/wiki/Pathology)
- [Fundus (eye)](https://en.wikipedia.org/wiki/Fundus_(eye))
- [Dermoscopy](https://en.wikipedia.org/wiki/Dermoscopy)
- [Endoscopy](https://en.wikipedia.org/wiki/Endoscopy)
- [Optical Coherence Tomography (OCT)](https://en.wikipedia.org/wiki/Optical_coherence_tomography)
This Space is based on the [BiomedParse model](https://microsoft.github.io/BiomedParse/).
"""
examples = [
["examples/144DME_as_F.jpeg", "OCT", []],
["examples/C3_EndoCV2021_00462.jpg", "Endoscopy", []],
["examples/CT-abdomen.png", "CT-Abdomen", []],
["examples/covid_1585.png", "X-Ray-Chest", []],
["examples/ISIC_0015551.jpg", "Dermoscopy", []],
[
"examples/LIDC-IDRI-0140_143_280_CT_lung.png",
"CT-Chest",
[],
],
[
"examples/Part_1_516_pathology_breast.png",
"Pathology",
[],
],
["examples/T0011.jpg", "Fundus", []],
[
"examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png",
"MRI-FLAIR-Brain",
[],
],
]
def load_modality_targets() -> Dict[str, List[str]]:
target_dist_json_path = Path("inference_utils/target_dist.json")
with open(target_dist_json_path, "r") as f:
target_dist = json.load(f)
modality_targets = modality_targets_from_target_dist(target_dist)
return modality_targets
MODALITY_TARGETS = load_modality_targets()
DEFAULT_MODALITY = "CT-Abdomen"
def run():
model = Model()
model.init()
with gr.Blocks() as demo:
gr.Markdown("# BiomedParse Demo")
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
input_modality_type = gr.Dropdown(
choices=list(MODALITY_TARGETS.keys()),
label="Modality Type",
value=DEFAULT_MODALITY,
)
input_targets = gr.CheckboxGroup(
choices=MODALITY_TARGETS[DEFAULT_MODALITY],
label="Targets",
)
with gr.Column():
output_image = gr.Image(type="pil", label="Prediction")
output_targets_not_found = gr.Textbox(
label="Targets Not Found", lines=4, max_lines=10
)
input_modality_type.change(
fn=update_input_targets,
inputs=input_modality_type,
outputs=input_targets,
)
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=model.predict,
inputs=[input_image, input_modality_type, input_targets],
outputs=[output_image, output_targets_not_found],
)
gr.Examples(
examples=examples,
inputs=[input_image, input_modality_type, input_targets],
outputs=[output_image, output_targets_not_found],
fn=model.predict,
cache_examples=False,
)
return demo
def update_input_targets(input_modality_type):
return gr.CheckboxGroup(
choices=MODALITY_TARGETS[input_modality_type],
value=[],
label="Targets",
)
demo = run()
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)