Spaces:
Sleeping
Sleeping
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import logging | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Optional, Tuple, Type | |
from functools import partial | |
from .common import LayerNorm2d, MLPBlock | |
from detectron2.utils.file_io import PathManager | |
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec | |
from .build import register_backbone | |
logger = logging.getLogger(__name__) | |
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa | |
class ImageEncoderViT(nn.Module): | |
def __init__( | |
self, | |
img_size: int = 1024, | |
patch_size: int = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
depth: int = 12, | |
num_heads: int = 12, | |
mlp_ratio: float = 4.0, | |
out_chans: int = 256, | |
qkv_bias: bool = True, | |
norm_layer: Type[nn.Module] = nn.LayerNorm, | |
act_layer: Type[nn.Module] = nn.GELU, | |
use_abs_pos: bool = True, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
window_size: int = 0, | |
global_attn_indexes: Tuple[int, ...] = (), | |
) -> None: | |
""" | |
Args: | |
img_size (int): Input image size. | |
patch_size (int): Patch size. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): Patch embedding dimension. | |
depth (int): Depth of ViT. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_abs_pos (bool): If True, use absolute positional embeddings. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. | |
global_attn_indexes (list): Indexes for blocks using global attention. | |
""" | |
super().__init__() | |
self.img_size = img_size | |
self.patch_embed = PatchEmbed( | |
kernel_size=(patch_size, patch_size), | |
stride=(patch_size, patch_size), | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
self.pos_embed: Optional[nn.Parameter] = None | |
if use_abs_pos: | |
# Initialize absolute positional embedding with pretrain image size. | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) | |
) | |
self.blocks = nn.ModuleList() | |
for i in range(depth): | |
block = Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
window_size=window_size if i not in global_attn_indexes else 0, | |
input_size=(img_size // patch_size, img_size // patch_size), | |
) | |
self.blocks.append(block) | |
self.neck = nn.Sequential( | |
nn.Conv2d( | |
embed_dim, | |
out_chans, | |
kernel_size=1, | |
bias=False, | |
), | |
LayerNorm2d(out_chans), | |
nn.Conv2d( | |
out_chans, | |
out_chans, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
), | |
LayerNorm2d(out_chans), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.patch_embed(x) | |
if self.pos_embed is not None: | |
x = x + self.pos_embed | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.neck(x.permute(0, 3, 1, 2)) | |
return x | |
class Block(nn.Module): | |
"""Transformer blocks with support of window attention and residual propagation blocks""" | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = True, | |
norm_layer: Type[nn.Module] = nn.LayerNorm, | |
act_layer: Type[nn.Module] = nn.GELU, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
window_size: int = 0, | |
input_size: Optional[Tuple[int, int]] = None, | |
) -> None: | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. If it equals 0, then | |
use global attention. | |
input_size (tuple(int, int) or None): Input resolution for calculating the relative | |
positional parameter size. | |
""" | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
input_size=input_size if window_size == 0 else (window_size, window_size), | |
) | |
self.norm2 = norm_layer(dim) | |
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) | |
self.window_size = window_size | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = x | |
x = self.norm1(x) | |
# Window partition | |
if self.window_size > 0: | |
H, W = x.shape[1], x.shape[2] | |
x, pad_hw = window_partition(x, self.window_size) | |
x = self.attn(x) | |
# Reverse window partition | |
if self.window_size > 0: | |
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
x = shortcut + x | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class Attention(nn.Module): | |
"""Multi-head Attention block with relative position embeddings.""" | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = True, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
input_size: Optional[Tuple[int, int]] = None, | |
) -> None: | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
input_size (tuple(int, int) or None): Input resolution for calculating the relative | |
positional parameter size. | |
""" | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.use_rel_pos = use_rel_pos | |
if self.use_rel_pos: | |
assert ( | |
input_size is not None | |
), "Input size must be provided if using relative positional encoding." | |
# initialize relative positional embeddings | |
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, H, W, _ = x.shape | |
# qkv with shape (3, B, nHead, H * W, C) | |
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
# q, k, v with shape (B * nHead, H * W, C) | |
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) | |
attn = (q * self.scale) @ k.transpose(-2, -1) | |
if self.use_rel_pos: | |
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) | |
x = self.proj(x) | |
return x | |
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: | |
""" | |
Partition into non-overlapping windows with padding if needed. | |
Args: | |
x (tensor): input tokens with [B, H, W, C]. | |
window_size (int): window size. | |
Returns: | |
windows: windows after partition with [B * num_windows, window_size, window_size, C]. | |
(Hp, Wp): padded height and width before partition | |
""" | |
B, H, W, C = x.shape | |
pad_h = (window_size - H % window_size) % window_size | |
pad_w = (window_size - W % window_size) % window_size | |
if pad_h > 0 or pad_w > 0: | |
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) | |
Hp, Wp = H + pad_h, W + pad_w | |
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows, (Hp, Wp) | |
def window_unpartition( | |
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] | |
) -> torch.Tensor: | |
""" | |
Window unpartition into original sequences and removing padding. | |
Args: | |
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. | |
window_size (int): window size. | |
pad_hw (Tuple): padded height and width (Hp, Wp). | |
hw (Tuple): original height and width (H, W) before padding. | |
Returns: | |
x: unpartitioned sequences with [B, H, W, C]. | |
""" | |
Hp, Wp = pad_hw | |
H, W = hw | |
B = windows.shape[0] // (Hp * Wp // window_size // window_size) | |
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) | |
if Hp > H or Wp > W: | |
x = x[:, :H, :W, :].contiguous() | |
return x | |
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: | |
""" | |
Get relative positional embeddings according to the relative positions of | |
query and key sizes. | |
Args: | |
q_size (int): size of query q. | |
k_size (int): size of key k. | |
rel_pos (Tensor): relative position embeddings (L, C). | |
Returns: | |
Extracted positional embeddings according to relative positions. | |
""" | |
max_rel_dist = int(2 * max(q_size, k_size) - 1) | |
# Interpolate rel pos if needed. | |
if rel_pos.shape[0] != max_rel_dist: | |
# Interpolate rel pos. | |
rel_pos_resized = F.interpolate( | |
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), | |
size=max_rel_dist, | |
mode="linear", | |
) | |
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) | |
else: | |
rel_pos_resized = rel_pos | |
# Scale the coords with short length if shapes for q and k are different. | |
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) | |
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) | |
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) | |
return rel_pos_resized[relative_coords.long()] | |
def add_decomposed_rel_pos( | |
attn: torch.Tensor, | |
q: torch.Tensor, | |
rel_pos_h: torch.Tensor, | |
rel_pos_w: torch.Tensor, | |
q_size: Tuple[int, int], | |
k_size: Tuple[int, int], | |
) -> torch.Tensor: | |
""" | |
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. | |
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 | |
Args: | |
attn (Tensor): attention map. | |
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). | |
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. | |
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. | |
q_size (Tuple): spatial sequence size of query q with (q_h, q_w). | |
k_size (Tuple): spatial sequence size of key k with (k_h, k_w). | |
Returns: | |
attn (Tensor): attention map with added relative positional embeddings. | |
""" | |
q_h, q_w = q_size | |
k_h, k_w = k_size | |
Rh = get_rel_pos(q_h, k_h, rel_pos_h) | |
Rw = get_rel_pos(q_w, k_w, rel_pos_w) | |
B, _, dim = q.shape | |
r_q = q.reshape(B, q_h, q_w, dim) | |
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) | |
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) | |
attn = ( | |
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] | |
).view(B, q_h * q_w, k_h * k_w) | |
return attn | |
class PatchEmbed(nn.Module): | |
""" | |
Image to Patch Embedding. | |
""" | |
def __init__( | |
self, | |
kernel_size: Tuple[int, int] = (16, 16), | |
stride: Tuple[int, int] = (16, 16), | |
padding: Tuple[int, int] = (0, 0), | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
) -> None: | |
""" | |
Args: | |
kernel_size (Tuple): kernel size of the projection layer. | |
stride (Tuple): stride of the projection layer. | |
padding (Tuple): padding size of the projection layer. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): Patch embedding dimension. | |
""" | |
super().__init__() | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.proj(x) | |
# B C H W -> B H W C | |
x = x.permute(0, 2, 3, 1) | |
return x | |
class SimpleFPN(nn.Module): | |
def __init__(self, in_dim=768, out_dims=[128, 256, 512, 1024]): | |
super().__init__() | |
self.down_4_chan = max(out_dims[0]*2, in_dim // 2) | |
self.down_4 = nn.Sequential( | |
nn.ConvTranspose2d(in_dim, self.down_4_chan, 2, stride=2), | |
nn.GroupNorm(1, self.down_4_chan), | |
nn.GELU(), | |
nn.ConvTranspose2d(self.down_4_chan, self.down_4_chan // 2, 2, stride=2), | |
nn.GroupNorm(1, self.down_4_chan // 2), | |
nn.Conv2d(self.down_4_chan // 2, out_dims[0], 1), | |
nn.GroupNorm(1, out_dims[0]), | |
nn.GELU() | |
) | |
self.down_8_chan = max(out_dims[1], in_dim // 2) | |
self.down_8 = nn.Sequential( | |
nn.ConvTranspose2d(in_dim, self.down_8_chan, 2, stride=2), | |
nn.GroupNorm(1, self.down_8_chan), | |
nn.Conv2d(self.down_8_chan, out_dims[1], 1), | |
nn.GroupNorm(1, out_dims[1]), | |
nn.GELU() | |
) | |
self.down_16 = nn.Sequential( | |
nn.Conv2d(in_dim, out_dims[2], 1), | |
nn.GroupNorm(1, out_dims[2]), | |
nn.GELU() | |
) | |
self.down_32_chan = max(out_dims[3], in_dim * 2) | |
self.down_32 = nn.Sequential( | |
nn.Conv2d(in_dim, self.down_32_chan, 2, stride=2), | |
nn.GroupNorm(1, self.down_32_chan), | |
nn.Conv2d(self.down_32_chan, out_dims[3], 1), | |
nn.GroupNorm(1, out_dims[3]), | |
nn.GELU() | |
) | |
self.init_weights() | |
def init_weights(self): | |
# TODO | |
pass | |
def forward(self, x): | |
x_down_4 = self.down_4(x) | |
x_down_8 = self.down_8(x) | |
x_down_16 = self.down_16(x) | |
x_down_32 = self.down_32(x) | |
return { | |
'res2': x_down_4, | |
'res3': x_down_8, | |
'res4': x_down_16, | |
'res5': x_down_32 | |
} | |
class D2ViT(ImageEncoderViT, Backbone): | |
def __init__(self, cfg, input_shape): | |
size = cfg['BACKBONE']['VIT']['SIZE'] | |
if size == "base": | |
encoder_depth = 12 | |
encoder_embed_dim = 768 | |
encoder_num_heads = 12 | |
encoder_global_attn_indexes = [2, 5, 8, 11] | |
neck_in_dim=768 | |
neck_out_dims=[128, 256, 512, 1024] | |
elif size == "large": | |
encoder_embed_dim = 1024 | |
encoder_depth = 24 | |
encoder_num_heads = 16 | |
encoder_global_attn_indexes = [5, 11, 17, 23] | |
neck_in_dim=1024 | |
neck_out_dims=[128, 256, 512, 1024] | |
elif size == "huge": | |
encoder_embed_dim = 1280 | |
encoder_depth = 32 | |
encoder_num_heads = 16 | |
encoder_global_attn_indexes = [7, 15, 23, 31] | |
neck_in_dim=1280 | |
neck_out_dims=[128, 256, 512, 1024] | |
prompt_embed_dim = 256 | |
image_size = 1024 | |
vit_patch_size = 16 | |
image_embedding_size = image_size // vit_patch_size | |
super().__init__( | |
depth=encoder_depth, | |
embed_dim=encoder_embed_dim, | |
img_size=image_size, | |
mlp_ratio=4, | |
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), | |
num_heads=encoder_num_heads, | |
patch_size=vit_patch_size, | |
qkv_bias=True, | |
use_rel_pos=True, | |
global_attn_indexes=encoder_global_attn_indexes, | |
window_size=14, | |
out_chans=prompt_embed_dim, | |
) | |
self.neck = SimpleFPN(in_dim=neck_in_dim, out_dims=neck_out_dims) | |
self._out_features = cfg['BACKBONE']['VIT']['OUT_FEATURES'] | |
self._out_feature_strides = { | |
"res2": 4, | |
"res3": 8, | |
"res4": 16, | |
"res5": 32, | |
} | |
self._out_feature_channels = { | |
"res2": neck_out_dims[0], | |
"res3": neck_out_dims[1], | |
"res4": neck_out_dims[2], | |
"res5": neck_out_dims[3], | |
} | |
def forward(self, x): | |
""" | |
Args: | |
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. | |
Returns: | |
dict[str->Tensor]: names and the corresponding features | |
""" | |
assert ( | |
x.dim() == 4 | |
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!" | |
outputs = {} | |
y = super().forward(x) | |
for k in y.keys(): | |
if k in self._out_features: | |
outputs[k] = y[k] | |
return outputs | |
def output_shape(self): | |
return { | |
name: ShapeSpec( | |
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] | |
) | |
for name in self._out_features | |
} | |
def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True): | |
model_dict = self.state_dict() | |
pretrained_dict = pretrained_dict['model'] if 'model' in pretrained_dict else pretrained_dict | |
pretrained_dict = {k.replace('image_encoder.', ''):v for k,v in pretrained_dict.items()} | |
pretrained_dict = { | |
k: v for k, v in pretrained_dict.items() | |
if k in model_dict.keys() | |
} | |
need_init_state_dict = {} | |
for k, v in pretrained_dict.items(): | |
need_init = ( | |
( | |
k.split('.')[0] in pretrained_layers | |
or pretrained_layers[0] == '*' | |
) | |
and 'relative_position_index' not in k | |
and 'attn_mask' not in k | |
) | |
if need_init: | |
need_init_state_dict[k] = v | |
logger.info(f'=> loaded keys {need_init_state_dict.keys()}') | |
unloaded_keys = set(model_dict.keys()) - set(need_init_state_dict.keys()) | |
logger.info(f'=> unloaded keys {unloaded_keys}') | |
self.load_state_dict(need_init_state_dict, strict=False) | |
def size_divisibility(self): | |
return 32 | |
def get_vit_backbone(cfg): | |
vit = D2ViT(cfg['MODEL'], 224) | |
if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True: | |
filename = cfg['MODEL']['BACKBONE']['PRETRAINED'] | |
assert os.path.isfile(filename), f"=> no checkpoint found at '{filename}'" | |
logger.info(f'=> init from {filename}') | |
with PathManager.open(filename, "rb") as f: | |
ckpt = torch.load(f) | |
vit.load_weights(ckpt, cfg['MODEL']['BACKBONE']['VIT'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE']) | |
return vit | |