kernel-luso-comfort commited on
Commit
fbf538f
·
1 Parent(s): 5ee40a1

Refactor demo interface in main.py and update .gitignore to exclude cached examples

Browse files
Files changed (2) hide show
  1. .gitignore +1 -0
  2. main.py +58 -47
.gitignore CHANGED
@@ -1,3 +1,4 @@
1
  .venv
2
  __pycache__
3
  .pytest_cache
 
 
1
  .venv
2
  __pycache__
3
  .pytest_cache
4
+ gradio_cached_examples
main.py CHANGED
@@ -26,53 +26,6 @@ else:
26
  gr.set_static_paths(["assets"])
27
 
28
 
29
- def run():
30
- global model
31
- model = init_model()
32
-
33
- demo = gr.Interface(
34
- fn=predict,
35
- inputs=[
36
- gr.Image(type="pil", label="Input Image"),
37
- gr.Textbox(
38
- label="Prompts",
39
- placeholder="Enter prompts separated by commas (e.g., neoplastic cells, inflammatory cells)",
40
- ),
41
- ],
42
- outputs=gr.Image(type="pil", label="Prediction"),
43
- title="BiomedParse Demo",
44
- description=description,
45
- allow_flagging="never",
46
- examples=[
47
- ["examples/144DME_as_F.jpeg", "edema"],
48
- ["examples/C3_EndoCV2021_00462.jpg", "polyp"],
49
- ["examples/CT-abdomen.png", "liver, pancreas, spleen"],
50
- ["examples/covid_1585.png", "left lung"],
51
- ["examples/covid_1585.png", "right lung"],
52
- ["examples/covid_1585.png", "COVID-19 infection"],
53
- ["examples/ISIC_0015551.jpg", "lesion"],
54
- ["examples/LIDC-IDRI-0140_143_280_CT_lung.png", "lung nodule"],
55
- ["examples/LIDC-IDRI-0140_143_280_CT_lung.png", "COVID-19 infection"],
56
- [
57
- "examples/Part_1_516_pathology_breast.png",
58
- "connective tissue cells",
59
- ],
60
- [
61
- "examples/Part_1_516_pathology_breast.png",
62
- "neoplastic cells",
63
- ],
64
- [
65
- "examples/Part_1_516_pathology_breast.png",
66
- "neoplastic cells, inflammatory cells",
67
- ],
68
- ["examples/T0011.jpg", "optic disc"],
69
- ["examples/T0011.jpg", "optic cup"],
70
- ["examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png", "glioma"],
71
- ],
72
- )
73
- return demo
74
-
75
-
76
  description = """Upload a biomedical image and enter prompts (separated by commas) to detect specific features.
77
 
78
  The model understands these prompts:
@@ -96,6 +49,64 @@ This Space is based on the [BiomedParse model](https://microsoft.github.io/Biome
96
  """
97
 
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  demo = run()
100
 
101
  if __name__ == "__main__":
 
26
  gr.set_static_paths(["assets"])
27
 
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  description = """Upload a biomedical image and enter prompts (separated by commas) to detect specific features.
30
 
31
  The model understands these prompts:
 
49
  """
50
 
51
 
52
+ examples = [
53
+ ["examples/144DME_as_F.jpeg", "edema"],
54
+ ["examples/C3_EndoCV2021_00462.jpg", "polyp"],
55
+ ["examples/CT-abdomen.png", "liver, pancreas, spleen"],
56
+ ["examples/covid_1585.png", "left lung"],
57
+ ["examples/covid_1585.png", "right lung"],
58
+ ["examples/covid_1585.png", "COVID-19 infection"],
59
+ ["examples/ISIC_0015551.jpg", "lesion"],
60
+ ["examples/LIDC-IDRI-0140_143_280_CT_lung.png", "lung nodule"],
61
+ ["examples/LIDC-IDRI-0140_143_280_CT_lung.png", "COVID-19 infection"],
62
+ ["examples/Part_1_516_pathology_breast.png", "connective tissue cells"],
63
+ ["examples/Part_1_516_pathology_breast.png", "neoplastic cells"],
64
+ [
65
+ "examples/Part_1_516_pathology_breast.png",
66
+ "neoplastic cells, inflammatory cells",
67
+ ],
68
+ ["examples/T0011.jpg", "optic disc"],
69
+ ["examples/T0011.jpg", "optic cup"],
70
+ ["examples/TCGA_HT_7856_19950831_8_MRI-FLAIR_brain.png", "glioma"],
71
+ ]
72
+
73
+
74
+ def run():
75
+ global model
76
+ model = init_model()
77
+
78
+ with gr.Blocks() as demo:
79
+ gr.Markdown("# BiomedParse Demo")
80
+ gr.Markdown(description)
81
+
82
+ with gr.Row():
83
+ with gr.Column():
84
+ input_image = gr.Image(type="pil", label="Input Image")
85
+ input_text = gr.Textbox(
86
+ label="Prompts",
87
+ placeholder="Enter prompts separated by commas (e.g., neoplastic cells, inflammatory cells)",
88
+ )
89
+ with gr.Column():
90
+ output_image = gr.Image(type="pil", label="Prediction")
91
+
92
+ predict_btn = gr.Button("Submit")
93
+ predict_btn.click(
94
+ fn=predict,
95
+ inputs=[input_image, input_text],
96
+ outputs=output_image,
97
+ )
98
+
99
+ gr.Examples(
100
+ examples=examples,
101
+ inputs=[input_image, input_text],
102
+ outputs=output_image,
103
+ fn=predict,
104
+ cache_examples=False,
105
+ )
106
+
107
+ return demo
108
+
109
+
110
  demo = run()
111
 
112
  if __name__ == "__main__":