Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -56,7 +56,8 @@ model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_l
|
|
56 |
# Define the training arguments
|
57 |
training_args = TrainingArguments(
|
58 |
output_dir='./results',
|
59 |
-
eval_strategy='epoch', # Evaluate
|
|
|
60 |
learning_rate=2e-5,
|
61 |
per_device_train_batch_size=8,
|
62 |
per_device_eval_batch_size=8,
|
@@ -64,7 +65,7 @@ training_args = TrainingArguments(
|
|
64 |
weight_decay=0.01,
|
65 |
logging_dir='./logs',
|
66 |
logging_steps=500,
|
67 |
-
save_steps=1000,
|
68 |
load_best_model_at_end=True,
|
69 |
metric_for_best_model="accuracy",
|
70 |
do_train=True,
|
@@ -72,6 +73,7 @@ training_args = TrainingArguments(
|
|
72 |
)
|
73 |
|
74 |
|
|
|
75 |
# Trainer setup
|
76 |
trainer = Trainer(
|
77 |
model=model,
|
|
|
56 |
# Define the training arguments
|
57 |
training_args = TrainingArguments(
|
58 |
output_dir='./results',
|
59 |
+
eval_strategy='epoch', # Evaluate at the end of each epoch
|
60 |
+
save_strategy='epoch', # Save model at the end of each epoch
|
61 |
learning_rate=2e-5,
|
62 |
per_device_train_batch_size=8,
|
63 |
per_device_eval_batch_size=8,
|
|
|
65 |
weight_decay=0.01,
|
66 |
logging_dir='./logs',
|
67 |
logging_steps=500,
|
68 |
+
save_steps=1000, # Optional, you can keep this if you want to save every N steps (only used if save_strategy is 'steps')
|
69 |
load_best_model_at_end=True,
|
70 |
metric_for_best_model="accuracy",
|
71 |
do_train=True,
|
|
|
73 |
)
|
74 |
|
75 |
|
76 |
+
|
77 |
# Trainer setup
|
78 |
trainer = Trainer(
|
79 |
model=model,
|