Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,21 @@
|
|
1 |
-
from sklearn.model_selection import train_test_split
|
2 |
import torch
|
3 |
-
from
|
|
|
|
|
|
|
|
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
# Ensure that the columns are named correctly
|
10 |
-
print(df.head())
|
11 |
|
|
|
|
|
|
|
12 |
|
|
|
13 |
class ConversationDataset(Dataset):
|
14 |
def __init__(self, agent_utterances, customer_utterances, rule_followed, question_asked, question_answered):
|
15 |
self.agent_utterances = agent_utterances
|
@@ -35,17 +41,10 @@ class ConversationDataset(Dataset):
|
|
35 |
labels = torch.tensor([self.rule_followed[idx], self.question_asked[idx], self.question_answered[idx]], dtype=torch.long)
|
36 |
return {**inputs, 'labels': labels}
|
37 |
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
41 |
-
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=3) # Multi-label classification
|
42 |
-
|
43 |
-
# Check if GPU is available
|
44 |
-
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
45 |
-
model.to(device)
|
46 |
-
|
47 |
-
|
48 |
-
# Extract agent utterances, customer utterances, and labels (rule_followed, question_asked, question_answered)
|
49 |
agent_utterances = df['Agent Utterance'].tolist()
|
50 |
customer_utterances = df['Customer Utterance'].tolist()
|
51 |
rule_followed = df['Rule Followed'].tolist()
|
@@ -67,14 +66,17 @@ val_agent, val_customer = zip(*X_val)
|
|
67 |
val_rule, val_question, val_answer = zip(*y_val)
|
68 |
|
69 |
# Create dataset objects for training and validation
|
70 |
-
train_dataset = ConversationDataset(
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Create DataLoader for training and validation
|
74 |
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
75 |
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
|
76 |
|
77 |
-
|
78 |
# Set optimizer
|
79 |
optimizer = AdamW(model.parameters(), lr=1e-5)
|
80 |
|
@@ -100,38 +102,41 @@ for epoch in range(3): # Training for 3 epochs
|
|
100 |
|
101 |
loop.set_postfix(loss=loss.item())
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
# Evaluate the model
|
106 |
model.eval()
|
107 |
all_preds = []
|
108 |
all_labels = []
|
109 |
|
110 |
-
with torch.no_grad():
|
111 |
for batch in val_loader:
|
|
|
112 |
batch = {key: value.squeeze(1).to(device) for key, value in batch.items()}
|
|
|
|
|
113 |
outputs = model(**batch)
|
114 |
|
115 |
-
# Get predictions (
|
116 |
logits = outputs.logits
|
117 |
preds = torch.argmax(logits, dim=-1)
|
118 |
|
|
|
119 |
all_preds.append(preds.cpu().numpy())
|
120 |
all_labels.append(batch['labels'].cpu().numpy())
|
121 |
|
122 |
-
# Flatten
|
123 |
all_preds = [item for sublist in all_preds for item in sublist]
|
124 |
all_labels = [item for sublist in all_labels for item in sublist]
|
125 |
|
126 |
-
#
|
127 |
print(classification_report(all_labels, all_preds, target_names=["Rule Followed", "Question Asked", "Question Answered"]))
|
128 |
|
129 |
|
130 |
|
|
|
131 |
# Test the model with new data
|
132 |
# Example single prediction
|
133 |
test_agent_utterance = "What is your account number?"
|
134 |
-
test_customer_utterance = "
|
135 |
|
136 |
# Combine agent and customer utterance
|
137 |
input_text = test_agent_utterance + " [SEP] " + test_customer_utterance
|
|
|
|
|
1 |
import torch
|
2 |
+
from torch.utils.data import Dataset, DataLoader # Import Dataset here
|
3 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
4 |
+
from torch.optim import AdamW
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.metrics import classification_report
|
7 |
import pandas as pd
|
8 |
+
from tqdm import tqdm
|
9 |
|
10 |
+
# Initialize the tokenizer and model for BERT
|
11 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
12 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=3) # Multi-label classification
|
|
|
|
|
13 |
|
14 |
+
# Ensure the model is on the right device (GPU or CPU)
|
15 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
16 |
+
model.to(device)
|
17 |
|
18 |
+
# Custom Dataset Class for Conversation Data
|
19 |
class ConversationDataset(Dataset):
|
20 |
def __init__(self, agent_utterances, customer_utterances, rule_followed, question_asked, question_answered):
|
21 |
self.agent_utterances = agent_utterances
|
|
|
41 |
labels = torch.tensor([self.rule_followed[idx], self.question_asked[idx], self.question_answered[idx]], dtype=torch.long)
|
42 |
return {**inputs, 'labels': labels}
|
43 |
|
44 |
+
# Example of reading the data from CSV
|
45 |
+
df = pd.read_csv('conversation_data.csv')
|
46 |
|
47 |
+
# Extracting the agent and customer utterances along with labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
agent_utterances = df['Agent Utterance'].tolist()
|
49 |
customer_utterances = df['Customer Utterance'].tolist()
|
50 |
rule_followed = df['Rule Followed'].tolist()
|
|
|
66 |
val_rule, val_question, val_answer = zip(*y_val)
|
67 |
|
68 |
# Create dataset objects for training and validation
|
69 |
+
train_dataset = ConversationDataset(
|
70 |
+
train_agent, train_customer, train_rule, train_question, train_answer
|
71 |
+
)
|
72 |
+
val_dataset = ConversationDataset(
|
73 |
+
val_agent, val_customer, val_rule, val_question, val_answer
|
74 |
+
)
|
75 |
|
76 |
# Create DataLoader for training and validation
|
77 |
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
78 |
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)
|
79 |
|
|
|
80 |
# Set optimizer
|
81 |
optimizer = AdamW(model.parameters(), lr=1e-5)
|
82 |
|
|
|
102 |
|
103 |
loop.set_postfix(loss=loss.item())
|
104 |
|
105 |
+
# After training, evaluate the model on the validation set
|
|
|
|
|
106 |
model.eval()
|
107 |
all_preds = []
|
108 |
all_labels = []
|
109 |
|
110 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
111 |
for batch in val_loader:
|
112 |
+
# Move the batch to the device (GPU/CPU)
|
113 |
batch = {key: value.squeeze(1).to(device) for key, value in batch.items()}
|
114 |
+
|
115 |
+
# Forward pass: Get logits
|
116 |
outputs = model(**batch)
|
117 |
|
118 |
+
# Get predictions (highest probability)
|
119 |
logits = outputs.logits
|
120 |
preds = torch.argmax(logits, dim=-1)
|
121 |
|
122 |
+
# Append predictions and true labels
|
123 |
all_preds.append(preds.cpu().numpy())
|
124 |
all_labels.append(batch['labels'].cpu().numpy())
|
125 |
|
126 |
+
# Flatten lists of predictions and labels
|
127 |
all_preds = [item for sublist in all_preds for item in sublist]
|
128 |
all_labels = [item for sublist in all_labels for item in sublist]
|
129 |
|
130 |
+
# Print classification report for each task
|
131 |
print(classification_report(all_labels, all_preds, target_names=["Rule Followed", "Question Asked", "Question Answered"]))
|
132 |
|
133 |
|
134 |
|
135 |
+
|
136 |
# Test the model with new data
|
137 |
# Example single prediction
|
138 |
test_agent_utterance = "What is your account number?"
|
139 |
+
test_customer_utterance = "888888"
|
140 |
|
141 |
# Combine agent and customer utterance
|
142 |
input_text = test_agent_utterance + " [SEP] " + test_customer_utterance
|