Spaces:
Runtime error
Runtime error
Merge branch 'previews-from-callback'
Browse files- .gitattributes +1 -0
- app.py +301 -0
- pipeline_with_callback.py +335 -0
- requirements.txt +10 -0
- unsafe.png +0 -0
.gitattributes
CHANGED
@@ -28,4 +28,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
28 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
|
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from pipeline_with_callback import StableDiffusionPipelineWithCallback
|
5 |
+
from datasets import load_dataset
|
6 |
+
from PIL import Image
|
7 |
+
import re
|
8 |
+
|
9 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
10 |
+
device = "cuda"
|
11 |
+
|
12 |
+
#If you are running this code locally, you need to either do a 'huggingface-cli login` or paste your User Access Token from here https://huggingface.co/settings/tokens into the use_auth_token field below.
|
13 |
+
pipe = StableDiffusionPipelineWithCallback.from_pretrained(model_id, use_auth_token=True, revision="fp16", torch_dtype=torch.float16)
|
14 |
+
pipe = pipe.to(device)
|
15 |
+
torch.backends.cudnn.benchmark = True
|
16 |
+
|
17 |
+
#When running locally, you won`t have access to this, so you can remove this part
|
18 |
+
word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
|
19 |
+
word_list = word_list_dataset["train"]['text']
|
20 |
+
|
21 |
+
def infer(prompt, samples, steps, scale, seed):
|
22 |
+
#When running locally you can also remove this filter
|
23 |
+
for filter in word_list:
|
24 |
+
if re.search(rf"\b{filter}\b", prompt):
|
25 |
+
raise gr.Error("Unsafe content found. Please try again with different prompts.")
|
26 |
+
|
27 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
28 |
+
|
29 |
+
images_list = pipe(
|
30 |
+
[prompt] * samples,
|
31 |
+
num_inference_steps=steps,
|
32 |
+
guidance_scale=scale,
|
33 |
+
generator=generator,
|
34 |
+
)
|
35 |
+
images = []
|
36 |
+
safe_image = Image.open(r"unsafe.png")
|
37 |
+
for i, image in enumerate(images_list["sample"]):
|
38 |
+
if(images_list["nsfw_content_detected"][i]):
|
39 |
+
images.append(safe_image)
|
40 |
+
else:
|
41 |
+
images.append(image)
|
42 |
+
return images
|
43 |
+
|
44 |
+
css = """
|
45 |
+
.gradio-container {
|
46 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
47 |
+
}
|
48 |
+
.gr-button {
|
49 |
+
color: white;
|
50 |
+
border-color: black;
|
51 |
+
background: black;
|
52 |
+
}
|
53 |
+
input[type='range'] {
|
54 |
+
accent-color: black;
|
55 |
+
}
|
56 |
+
.dark input[type='range'] {
|
57 |
+
accent-color: #dfdfdf;
|
58 |
+
}
|
59 |
+
.container {
|
60 |
+
max-width: 730px;
|
61 |
+
margin: auto;
|
62 |
+
padding-top: 1.5rem;
|
63 |
+
}
|
64 |
+
#gallery {
|
65 |
+
min-height: 22rem;
|
66 |
+
margin-bottom: 15px;
|
67 |
+
margin-left: auto;
|
68 |
+
margin-right: auto;
|
69 |
+
border-bottom-right-radius: .5rem !important;
|
70 |
+
border-bottom-left-radius: .5rem !important;
|
71 |
+
}
|
72 |
+
#gallery>div>.h-full {
|
73 |
+
min-height: 20rem;
|
74 |
+
}
|
75 |
+
.details:hover {
|
76 |
+
text-decoration: underline;
|
77 |
+
}
|
78 |
+
.gr-button {
|
79 |
+
white-space: nowrap;
|
80 |
+
}
|
81 |
+
.gr-button:focus {
|
82 |
+
border-color: rgb(147 197 253 / var(--tw-border-opacity));
|
83 |
+
outline: none;
|
84 |
+
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
|
85 |
+
--tw-border-opacity: 1;
|
86 |
+
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
|
87 |
+
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
|
88 |
+
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
|
89 |
+
--tw-ring-opacity: .5;
|
90 |
+
}
|
91 |
+
#advanced-btn {
|
92 |
+
font-size: .7rem !important;
|
93 |
+
line-height: 19px;
|
94 |
+
margin-top: 12px;
|
95 |
+
margin-bottom: 12px;
|
96 |
+
padding: 2px 8px;
|
97 |
+
border-radius: 14px !important;
|
98 |
+
}
|
99 |
+
#advanced-options {
|
100 |
+
display: none;
|
101 |
+
margin-bottom: 20px;
|
102 |
+
}
|
103 |
+
.footer {
|
104 |
+
margin-bottom: 45px;
|
105 |
+
margin-top: 35px;
|
106 |
+
text-align: center;
|
107 |
+
border-bottom: 1px solid #e5e5e5;
|
108 |
+
}
|
109 |
+
.footer>p {
|
110 |
+
font-size: .8rem;
|
111 |
+
display: inline-block;
|
112 |
+
padding: 0 10px;
|
113 |
+
transform: translateY(10px);
|
114 |
+
background: white;
|
115 |
+
}
|
116 |
+
.dark .footer {
|
117 |
+
border-color: #303030;
|
118 |
+
}
|
119 |
+
.dark .footer>p {
|
120 |
+
background: #0b0f19;
|
121 |
+
}
|
122 |
+
.acknowledgments h4{
|
123 |
+
margin: 1.25em 0 .25em 0;
|
124 |
+
font-weight: bold;
|
125 |
+
font-size: 115%;
|
126 |
+
}
|
127 |
+
"""
|
128 |
+
|
129 |
+
block = gr.Blocks(css=css)
|
130 |
+
|
131 |
+
examples = [
|
132 |
+
[
|
133 |
+
'A high tech solarpunk utopia in the Amazon rainforest',
|
134 |
+
4,
|
135 |
+
45,
|
136 |
+
7.5,
|
137 |
+
1024,
|
138 |
+
],
|
139 |
+
[
|
140 |
+
'A pikachu fine dining with a view to the Eiffel Tower',
|
141 |
+
4,
|
142 |
+
45,
|
143 |
+
7,
|
144 |
+
1024,
|
145 |
+
],
|
146 |
+
[
|
147 |
+
'A mecha robot in a favela in expressionist style',
|
148 |
+
4,
|
149 |
+
45,
|
150 |
+
7,
|
151 |
+
1024,
|
152 |
+
],
|
153 |
+
[
|
154 |
+
'an insect robot preparing a delicious meal',
|
155 |
+
4,
|
156 |
+
45,
|
157 |
+
7,
|
158 |
+
1024,
|
159 |
+
],
|
160 |
+
[
|
161 |
+
"A small cabin on top of a snowy mountain in the style of Disney, artstation",
|
162 |
+
4,
|
163 |
+
45,
|
164 |
+
7,
|
165 |
+
1024,
|
166 |
+
],
|
167 |
+
]
|
168 |
+
|
169 |
+
with block:
|
170 |
+
gr.HTML(
|
171 |
+
"""
|
172 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
173 |
+
<div
|
174 |
+
style="
|
175 |
+
display: inline-flex;
|
176 |
+
align-items: center;
|
177 |
+
gap: 0.8rem;
|
178 |
+
font-size: 1.75rem;
|
179 |
+
"
|
180 |
+
>
|
181 |
+
<svg
|
182 |
+
width="0.65em"
|
183 |
+
height="0.65em"
|
184 |
+
viewBox="0 0 115 115"
|
185 |
+
fill="none"
|
186 |
+
xmlns="http://www.w3.org/2000/svg"
|
187 |
+
>
|
188 |
+
<rect width="23" height="23" fill="white"></rect>
|
189 |
+
<rect y="69" width="23" height="23" fill="white"></rect>
|
190 |
+
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
|
191 |
+
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
|
192 |
+
<rect x="46" width="23" height="23" fill="white"></rect>
|
193 |
+
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
|
194 |
+
<rect x="69" width="23" height="23" fill="black"></rect>
|
195 |
+
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
|
196 |
+
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
|
197 |
+
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
|
198 |
+
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
|
199 |
+
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
|
200 |
+
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
|
201 |
+
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
|
202 |
+
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
|
203 |
+
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
|
204 |
+
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
|
205 |
+
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
|
206 |
+
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
|
207 |
+
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
|
208 |
+
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
|
209 |
+
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
|
210 |
+
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
|
211 |
+
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
|
212 |
+
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
|
213 |
+
</svg>
|
214 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
215 |
+
Stable Diffusion Demo
|
216 |
+
</h1>
|
217 |
+
</div>
|
218 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
219 |
+
Stable Diffusion is a state of the art text-to-image model that generates
|
220 |
+
images from text.<br>For faster generation and forthcoming API
|
221 |
+
access you can try
|
222 |
+
<a
|
223 |
+
href="http://beta.dreamstudio.ai/"
|
224 |
+
style="text-decoration: underline;"
|
225 |
+
target="_blank"
|
226 |
+
>DreamStudio Beta</a
|
227 |
+
>
|
228 |
+
</p>
|
229 |
+
</div>
|
230 |
+
"""
|
231 |
+
)
|
232 |
+
with gr.Group():
|
233 |
+
with gr.Box():
|
234 |
+
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
235 |
+
text = gr.Textbox(
|
236 |
+
label="Enter your prompt",
|
237 |
+
show_label=False,
|
238 |
+
max_lines=1,
|
239 |
+
placeholder="Enter your prompt",
|
240 |
+
).style(
|
241 |
+
border=(True, False, True, True),
|
242 |
+
rounded=(True, False, False, True),
|
243 |
+
container=False,
|
244 |
+
)
|
245 |
+
btn = gr.Button("Generate image").style(
|
246 |
+
margin=False,
|
247 |
+
rounded=(False, True, True, False),
|
248 |
+
)
|
249 |
+
|
250 |
+
gallery = gr.Gallery(
|
251 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
252 |
+
).style(grid=[2], height="auto")
|
253 |
+
|
254 |
+
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
|
255 |
+
|
256 |
+
with gr.Row(elem_id="advanced-options"):
|
257 |
+
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
|
258 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1)
|
259 |
+
scale = gr.Slider(
|
260 |
+
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
|
261 |
+
)
|
262 |
+
seed = gr.Slider(
|
263 |
+
label="Seed",
|
264 |
+
minimum=0,
|
265 |
+
maximum=2147483647,
|
266 |
+
step=1,
|
267 |
+
randomize=True,
|
268 |
+
)
|
269 |
+
|
270 |
+
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed], outputs=gallery, cache_examples=True)
|
271 |
+
ex.dataset.headers = [""]
|
272 |
+
|
273 |
+
|
274 |
+
text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
|
275 |
+
btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
|
276 |
+
advanced_button.click(
|
277 |
+
None,
|
278 |
+
[],
|
279 |
+
text,
|
280 |
+
_js="""
|
281 |
+
() => {
|
282 |
+
const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
|
283 |
+
options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
|
284 |
+
}""",
|
285 |
+
)
|
286 |
+
gr.HTML(
|
287 |
+
"""
|
288 |
+
<div class="footer">
|
289 |
+
<p>Model by <a href="https://huggingface.co/CompVis" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Gradio Demo by 🤗 Hugging Face
|
290 |
+
</p>
|
291 |
+
</div>
|
292 |
+
<div class="acknowledgments">
|
293 |
+
<p><h4>LICENSE</h4>
|
294 |
+
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
|
295 |
+
<p><h4>Biases and content acknowledgment</h4>
|
296 |
+
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
|
297 |
+
</div>
|
298 |
+
"""
|
299 |
+
)
|
300 |
+
|
301 |
+
block.queue(max_size=25).launch()
|
pipeline_with_callback.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import warnings
|
3 |
+
from typing import Callable, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
9 |
+
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
12 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
13 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
14 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
15 |
+
|
16 |
+
|
17 |
+
class StableDiffusionPipelineWithCallback(DiffusionPipeline):
|
18 |
+
r"""
|
19 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
20 |
+
|
21 |
+
** based on https://github.com/huggingface/diffusers/pull/521/files#diff-ab952f41078da66b9fcbbd913b419f8c334badceefac03a5f7edcd6dd986a8ef **
|
22 |
+
|
23 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
24 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
25 |
+
|
26 |
+
Args:
|
27 |
+
vae ([`AutoencoderKL`]):
|
28 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
29 |
+
text_encoder ([`CLIPTextModel`]):
|
30 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
31 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
32 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
33 |
+
tokenizer (`CLIPTokenizer`):
|
34 |
+
Tokenizer of class
|
35 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
36 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
37 |
+
scheduler ([`SchedulerMixin`]):
|
38 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
39 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
40 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
41 |
+
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
42 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
43 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
44 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
vae: AutoencoderKL,
|
50 |
+
text_encoder: CLIPTextModel,
|
51 |
+
tokenizer: CLIPTokenizer,
|
52 |
+
unet: UNet2DConditionModel,
|
53 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
54 |
+
safety_checker: StableDiffusionSafetyChecker,
|
55 |
+
feature_extractor: CLIPFeatureExtractor,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
scheduler = scheduler.set_format("pt")
|
59 |
+
self.register_modules(
|
60 |
+
vae=vae,
|
61 |
+
text_encoder=text_encoder,
|
62 |
+
tokenizer=tokenizer,
|
63 |
+
unet=unet,
|
64 |
+
scheduler=scheduler,
|
65 |
+
safety_checker=safety_checker,
|
66 |
+
feature_extractor=feature_extractor,
|
67 |
+
)
|
68 |
+
|
69 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
70 |
+
r"""
|
71 |
+
Enable sliced attention computation.
|
72 |
+
|
73 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
74 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
78 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
79 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
80 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
81 |
+
"""
|
82 |
+
if slice_size == "auto":
|
83 |
+
# half the attention head size is usually a good trade-off between
|
84 |
+
# speed and memory
|
85 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
86 |
+
self.unet.set_attention_slice(slice_size)
|
87 |
+
|
88 |
+
def disable_attention_slicing(self):
|
89 |
+
r"""
|
90 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
91 |
+
back to computing attention in one step.
|
92 |
+
"""
|
93 |
+
# set slice_size = `None` to disable `attention slicing`
|
94 |
+
self.enable_attention_slicing(None)
|
95 |
+
|
96 |
+
@torch.no_grad()
|
97 |
+
def decode_latents(self, latents: torch.FloatTensor) -> np.ndarray:
|
98 |
+
r"""
|
99 |
+
Scale and decode the latent representations into images using the VAE.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
latents (`torch.FloatTensor`):
|
103 |
+
Latent representations to decode into images.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
`np.ndarray`: Decoded images.
|
107 |
+
"""
|
108 |
+
latents = 1 / 0.18215 * latents
|
109 |
+
image = self.vae.decode(latents).sample
|
110 |
+
|
111 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
112 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
113 |
+
return image
|
114 |
+
|
115 |
+
@torch.no_grad()
|
116 |
+
def run_safety_checker(self, image: np.ndarray) -> Tuple[np.ndarray, List[bool]]:
|
117 |
+
r"""
|
118 |
+
Run the safety checker on the generated images. If potential NSFW content was detected, a warning will be
|
119 |
+
raised and a black image will be returned instead.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
image (`np.ndarray`):
|
123 |
+
Images to run the safety checker on.
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
`Tuple[np.ndarray, List[bool]]`: The first element contains the images that has been processed by the
|
127 |
+
safety checker. The second element is a boolean array indicating whether the images contain NSFW content.
|
128 |
+
"""
|
129 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
130 |
+
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)
|
131 |
+
return image, has_nsfw_concept
|
132 |
+
|
133 |
+
@torch.no_grad()
|
134 |
+
def __call__(
|
135 |
+
self,
|
136 |
+
prompt: Union[str, List[str]],
|
137 |
+
height: Optional[int] = 512,
|
138 |
+
width: Optional[int] = 512,
|
139 |
+
num_inference_steps: Optional[int] = 50,
|
140 |
+
guidance_scale: Optional[float] = 7.5,
|
141 |
+
eta: Optional[float] = 0.0,
|
142 |
+
generator: Optional[torch.Generator] = None,
|
143 |
+
latents: Optional[torch.FloatTensor] = None,
|
144 |
+
output_type: Optional[str] = "pil",
|
145 |
+
return_dict: bool = True,
|
146 |
+
callback: Optional[
|
147 |
+
Callable[[int, np.ndarray, torch.FloatTensor], None]
|
148 |
+
] = None,
|
149 |
+
callback_frequency: Optional[int] = 1,
|
150 |
+
**kwargs,
|
151 |
+
):
|
152 |
+
r"""
|
153 |
+
Function invoked when calling the pipeline for generation.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
prompt (`str` or `List[str]`):
|
157 |
+
The prompt or prompts to guide the image generation.
|
158 |
+
height (`int`, *optional*, defaults to 512):
|
159 |
+
The height in pixels of the generated image.
|
160 |
+
width (`int`, *optional*, defaults to 512):
|
161 |
+
The width in pixels of the generated image.
|
162 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
163 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
164 |
+
expense of slower inference.
|
165 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
166 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
167 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
168 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
169 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
170 |
+
usually at the expense of lower image quality.
|
171 |
+
eta (`float`, *optional*, defaults to 0.0):
|
172 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
173 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
174 |
+
generator (`torch.Generator`, *optional*):
|
175 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
176 |
+
deterministic.
|
177 |
+
latents (`torch.FloatTensor`, *optional*):
|
178 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
179 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
180 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
181 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
182 |
+
The output format of the generate image. Choose between
|
183 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
184 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
185 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
186 |
+
plain tuple.
|
187 |
+
callback (`Callable`, *optional*):
|
188 |
+
A function that will be called every `callback_frequency` steps during inference. The function will be
|
189 |
+
called with the following arguments: `callback(step: int, timestep: np.ndarray, latents:
|
190 |
+
torch.FloatTensor, image: Union[List[PIL.Image.Image], np.ndarray])`.
|
191 |
+
callback_frequency (`int`, *optional*, defaults to 1):
|
192 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
193 |
+
called at every step.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
197 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
198 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
199 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
200 |
+
(nsfw) content, according to the `safety_checker`.
|
201 |
+
"""
|
202 |
+
|
203 |
+
if "torch_device" in kwargs:
|
204 |
+
device = kwargs.pop("torch_device")
|
205 |
+
warnings.warn(
|
206 |
+
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
207 |
+
" Consider using `pipe.to(torch_device)` instead."
|
208 |
+
)
|
209 |
+
|
210 |
+
# Set device as before (to be removed in 0.3.0)
|
211 |
+
if device is None:
|
212 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
213 |
+
self.to(device)
|
214 |
+
|
215 |
+
if isinstance(prompt, str):
|
216 |
+
batch_size = 1
|
217 |
+
elif isinstance(prompt, list):
|
218 |
+
batch_size = len(prompt)
|
219 |
+
else:
|
220 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
221 |
+
|
222 |
+
if height % 8 != 0 or width % 8 != 0:
|
223 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
224 |
+
|
225 |
+
if (callback_frequency is None) or (
|
226 |
+
callback_frequency is not None and (not isinstance(callback_frequency, int) or callback_frequency <= 0)
|
227 |
+
):
|
228 |
+
raise ValueError(
|
229 |
+
f"`callback_frequency` has to be a positive integer but is {callback_frequency} of type"
|
230 |
+
f" {type(callback_frequency)}."
|
231 |
+
)
|
232 |
+
|
233 |
+
# get prompt text embeddings
|
234 |
+
text_input = self.tokenizer(
|
235 |
+
prompt,
|
236 |
+
padding="max_length",
|
237 |
+
max_length=self.tokenizer.model_max_length,
|
238 |
+
truncation=True,
|
239 |
+
return_tensors="pt",
|
240 |
+
)
|
241 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
242 |
+
|
243 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
244 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
245 |
+
# corresponds to doing no classifier free guidance.
|
246 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
247 |
+
# get unconditional embeddings for classifier free guidance
|
248 |
+
if do_classifier_free_guidance:
|
249 |
+
max_length = text_input.input_ids.shape[-1]
|
250 |
+
uncond_input = self.tokenizer(
|
251 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
252 |
+
)
|
253 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
254 |
+
|
255 |
+
# For classifier free guidance, we need to do two forward passes.
|
256 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
257 |
+
# to avoid doing two forward passes
|
258 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
259 |
+
|
260 |
+
# get the initial random noise unless the user supplied it
|
261 |
+
|
262 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
263 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
264 |
+
# However this currently doesn't work in `mps`.
|
265 |
+
latents_device = "cpu" if self.device.type == "mps" else self.device
|
266 |
+
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
267 |
+
if latents is None:
|
268 |
+
latents = torch.randn(
|
269 |
+
latents_shape,
|
270 |
+
generator=generator,
|
271 |
+
device=latents_device,
|
272 |
+
)
|
273 |
+
else:
|
274 |
+
if latents.shape != latents_shape:
|
275 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
276 |
+
latents = latents.to(self.device)
|
277 |
+
|
278 |
+
# set timesteps
|
279 |
+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
280 |
+
extra_set_kwargs = {}
|
281 |
+
if accepts_offset:
|
282 |
+
extra_set_kwargs["offset"] = 1
|
283 |
+
|
284 |
+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
285 |
+
|
286 |
+
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
|
287 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
288 |
+
latents = latents * self.scheduler.sigmas[0]
|
289 |
+
|
290 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
291 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
292 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
293 |
+
# and should be between [0, 1]
|
294 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
295 |
+
extra_step_kwargs = {}
|
296 |
+
if accepts_eta:
|
297 |
+
extra_step_kwargs["eta"] = eta
|
298 |
+
|
299 |
+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
300 |
+
# expand the latents if we are doing classifier free guidance
|
301 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
302 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
303 |
+
sigma = self.scheduler.sigmas[i]
|
304 |
+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
305 |
+
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
|
306 |
+
|
307 |
+
# predict the noise residual
|
308 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
309 |
+
|
310 |
+
# perform guidance
|
311 |
+
if do_classifier_free_guidance:
|
312 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
313 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
314 |
+
|
315 |
+
# compute the previous noisy sample x_t -> x_t-1
|
316 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
317 |
+
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample
|
318 |
+
else:
|
319 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
320 |
+
|
321 |
+
# call the callback, if provided
|
322 |
+
if callback is not None and i % callback_frequency == 0:
|
323 |
+
callback(i, t, latents)
|
324 |
+
|
325 |
+
image = self.decode_latents(latents)
|
326 |
+
|
327 |
+
image, has_nsfw_concept = self.run_safety_checker(image)
|
328 |
+
|
329 |
+
if output_type == "pil":
|
330 |
+
image = self.numpy_to_pil(image)
|
331 |
+
|
332 |
+
if not return_dict:
|
333 |
+
return (image, has_nsfw_concept)
|
334 |
+
|
335 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-e git+https://github.com/huggingface/diffusers.git@429dace10a356a776f935fc11e16d5b321b496f3#egg=diffusers
|
2 |
+
datasets~=2.4.0
|
3 |
+
ftfy
|
4 |
+
gradio~=3.3.1
|
5 |
+
numpy~=1.23.2
|
6 |
+
nvidia-ml-py3
|
7 |
+
Pillow~=9.2.0
|
8 |
+
transformers~=4.21.3
|
9 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
10 |
+
torch~=1.12.1
|
unsafe.png
ADDED
![]() |