Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,13 +9,15 @@ import torch
|
|
9 |
from PIL import Image
|
10 |
from diffusers import FluxInpaintPipeline
|
11 |
|
|
|
|
|
12 |
MARKDOWN = """
|
13 |
-
# FLUX
|
14 |
-
|
15 |
"""
|
16 |
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
-
IMAGE_SIZE =
|
19 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
|
@@ -34,32 +36,32 @@ def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
|
34 |
return image
|
35 |
|
36 |
|
37 |
-
EXAMPLES = [
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
]
|
63 |
|
64 |
pipe = FluxInpaintPipeline.from_pretrained(
|
65 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
@@ -122,17 +124,18 @@ def process(
|
|
122 |
if randomize_seed_checkbox:
|
123 |
seed_slicer = random.randint(0, MAX_SEED)
|
124 |
generator = torch.Generator().manual_seed(seed_slicer)
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
136 |
return result, resized_mask
|
137 |
|
138 |
|
@@ -174,9 +177,9 @@ with gr.Blocks() as demo:
|
|
174 |
with gr.Row():
|
175 |
strength_slider_component = gr.Slider(
|
176 |
label="Strength",
|
177 |
-
info="Indicates extent to transform the reference `image`. "
|
178 |
-
|
179 |
-
|
180 |
minimum=0,
|
181 |
maximum=1,
|
182 |
step=0.01,
|
@@ -185,10 +188,10 @@ with gr.Blocks() as demo:
|
|
185 |
|
186 |
num_inference_steps_slider_component = gr.Slider(
|
187 |
label="Number of inference steps",
|
188 |
-
info="The number of denoising steps. More denoising steps "
|
189 |
-
|
190 |
minimum=1,
|
191 |
-
maximum=
|
192 |
step=1,
|
193 |
value=20,
|
194 |
)
|
@@ -198,25 +201,25 @@ with gr.Blocks() as demo:
|
|
198 |
with gr.Accordion("Debug", open=False):
|
199 |
output_mask_component = gr.Image(
|
200 |
type='pil', image_mode='RGB', label='Input mask', format="png")
|
201 |
-
with gr.Row():
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
|
221 |
submit_button_component.click(
|
222 |
fn=process,
|
@@ -234,5 +237,4 @@ with gr.Blocks() as demo:
|
|
234 |
]
|
235 |
)
|
236 |
|
237 |
-
demo.launch(debug=False, show_error=True)
|
238 |
-
|
|
|
9 |
from PIL import Image
|
10 |
from diffusers import FluxInpaintPipeline
|
11 |
|
12 |
+
torch.cuda.empty_cache()
|
13 |
+
|
14 |
MARKDOWN = """
|
15 |
+
# FLUX Inpainting
|
16 |
+
Model used FLUX.1-schnell.
|
17 |
"""
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
+
IMAGE_SIZE = 512
|
21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
|
|
|
36 |
return image
|
37 |
|
38 |
|
39 |
+
# EXAMPLES = [
|
40 |
+
# [
|
41 |
+
# {
|
42 |
+
# "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
43 |
+
# "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw))],
|
44 |
+
# "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
|
45 |
+
# },
|
46 |
+
# "little lion",
|
47 |
+
# 42,
|
48 |
+
# False,
|
49 |
+
# 0.85,
|
50 |
+
# 30
|
51 |
+
# ],
|
52 |
+
# [
|
53 |
+
# {
|
54 |
+
# "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
55 |
+
# "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw))],
|
56 |
+
# "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
|
57 |
+
# },
|
58 |
+
# "tribal tattoos",
|
59 |
+
# 42,
|
60 |
+
# False,
|
61 |
+
# 0.85,
|
62 |
+
# 30
|
63 |
+
# ]
|
64 |
+
# ]
|
65 |
|
66 |
pipe = FluxInpaintPipeline.from_pretrained(
|
67 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
|
|
124 |
if randomize_seed_checkbox:
|
125 |
seed_slicer = random.randint(0, MAX_SEED)
|
126 |
generator = torch.Generator().manual_seed(seed_slicer)
|
127 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
128 |
+
result = pipe(
|
129 |
+
prompt=input_text,
|
130 |
+
image=resized_image,
|
131 |
+
mask_image=resized_mask,
|
132 |
+
width=width,
|
133 |
+
height=height,
|
134 |
+
strength=strength_slider,
|
135 |
+
generator=generator,
|
136 |
+
num_inference_steps=num_inference_steps_slider
|
137 |
+
).images[0]
|
138 |
+
torch.cuda.empty_cache()
|
139 |
return result, resized_mask
|
140 |
|
141 |
|
|
|
177 |
with gr.Row():
|
178 |
strength_slider_component = gr.Slider(
|
179 |
label="Strength",
|
180 |
+
# info="Indicates extent to transform the reference `image`. "
|
181 |
+
# "Must be between 0 and 1. `image` is used as a starting "
|
182 |
+
# "point and more noise is added the higher the `strength`.",
|
183 |
minimum=0,
|
184 |
maximum=1,
|
185 |
step=0.01,
|
|
|
188 |
|
189 |
num_inference_steps_slider_component = gr.Slider(
|
190 |
label="Number of inference steps",
|
191 |
+
# info="The number of denoising steps. More denoising steps "
|
192 |
+
# "usually lead to a higher quality image at the",
|
193 |
minimum=1,
|
194 |
+
maximum=20,
|
195 |
step=1,
|
196 |
value=20,
|
197 |
)
|
|
|
201 |
with gr.Accordion("Debug", open=False):
|
202 |
output_mask_component = gr.Image(
|
203 |
type='pil', image_mode='RGB', label='Input mask', format="png")
|
204 |
+
# with gr.Row():
|
205 |
+
# gr.Examples(
|
206 |
+
# fn=process,
|
207 |
+
# examples=EXAMPLES,
|
208 |
+
# inputs=[
|
209 |
+
# input_image_editor_component,
|
210 |
+
# input_text_component,
|
211 |
+
# seed_slicer_component,
|
212 |
+
# randomize_seed_checkbox_component,
|
213 |
+
# strength_slider_component,
|
214 |
+
# num_inference_steps_slider_component
|
215 |
+
# ],
|
216 |
+
# outputs=[
|
217 |
+
# output_image_component,
|
218 |
+
# output_mask_component
|
219 |
+
# ],
|
220 |
+
# run_on_click=True,
|
221 |
+
# cache_examples=True
|
222 |
+
# )
|
223 |
|
224 |
submit_button_component.click(
|
225 |
fn=process,
|
|
|
237 |
]
|
238 |
)
|
239 |
|
240 |
+
demo.launch(debug=False, show_error=True,share= True)
|
|