File size: 11,012 Bytes
a151177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f677e
a151177
 
 
0b1cc37
 
a151177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f677e
 
 
 
 
 
 
a151177
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import streamlit as st
import re
import requests
from newspaper import Article
from newspaper import Config
import preprocessor as p
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import torch.nn.functional as F
from goose3 import Goose
from goose3.configuration import Configuration  
from bs4 import BeautifulSoup

st.write("""
# ESG Prediction App

This is a Proof of Concept for a company ESG (Environmental, Social, and Governance) risk prediction application.
""")

company = st.text_input("Company", placeholder="PT Adaro Minerals Indonesia Tbk")

GOOGLE = 'https://www.google.com/search'
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Cafari/537.36'}

API_KEY = 'AIzaSyDCfIltnvAQ3lvpovRXydRMhGQ-VxkboQ4'
SEARCH_ENGINE_ID = 'e586ee8a6c7e64d7b'

from googleapiclient.discovery import build
import math

def google_search(search_term, api_key, cse_id, **kwargs):
    service = build("customsearch", "v1", developerKey=api_key)
    
    num_search_results = kwargs['num']
    if num_search_results > 100:
        raise NotImplementedError('Google Custom Search API supports max of 100 results')
    elif num_search_results > 10:
        kwargs['num'] = 10 # this cannot be > 10 in API call 
        calls_to_make = math.ceil(num_search_results / 10)
    else:
        calls_to_make = 1
        
    kwargs['start'] = start_item = 1
    items_to_return = []
    while calls_to_make > 0:
        res = service.cse().list(q=search_term, cx=cse_id, **kwargs).execute()
        items_to_return.extend(res['items'])
        calls_to_make -= 1
        start_item += 10
        kwargs['start'] = start_item
        leftover = num_search_results - start_item + 1
        if 0 < leftover < 10:
            kwargs['num'] = leftover
        
    return items_to_return 

if company:
    # print(f'Run: {company}')
    links = []
    news_text = []
    
    query = f'{company}'
    response = google_search(query, API_KEY, SEARCH_ENGINE_ID, num=50)

    url_collection = [item['link'] for item in response]
    import os
    os.environ['ST_USER_AGENT'] = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'

    user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'
    config = Config()
    config.browser_user_agent = user_agent
    config.request_timeout = 60
    config.fetch_images = False
    config.memoize_articles = True
    config.language = 'id'

    # p.set_options(p.OPT.MENTION, p.OPT.EMOJI, p.OPT.HASHTAG, p.OPT.RESERVED, p.OPT.SMILEY, p.OPT.URL)

    def cleaner(text):
        text = re.sub("@[A-Za-z0-9]+", "", text) #Remove @ sign
        text = text.replace("#", "").replace("_", "") #Remove hashtag sign but keep the text
        # text = p.clean(text) # Clean text from any mention, emoji, hashtag, reserve words(such as FAV, RT), smiley, and url
        text = text.strip().replace("\n","")
        return text
    
    for url in url_collection:
        if "http" not in url:
            continue
        lang = "id"
        if "eco-business.com" in url or "thejakartapost.com" in url or "marketforces.org.au" in url or "jakartaglobe.id" in url:
            lang = "en"

        ### Selenium
        # from selenium import webdriver
        # from selenium.webdriver.chrome.options import Options
        # from goose3 import Goose

        # options = Options()
        # options.headless = True
        # options.add_argument("user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36")

        # driver = webdriver.Chrome(options=options)
        # # url = 'https://example.com/news-article'
        # driver.get(url)

        # html = driver.page_source
        # driver.quit()

        # g = Goose()
        # article = g.extract(raw_html=html)

        # print(article.cleaned_text)
        # news_text.append(article.cleaned_text)
        ###

        # article = Article(url, language=lang, config=config)
        # article.download()
        # article.parse()
        # article_clean = cleaner(article.text)

        # url = 'https://example.com/news-article'
        headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}

        response = requests.get(url, headers=headers)
        # html = response.text

        soup = BeautifulSoup(response.content, 'html.parser')

        g = Goose()
        article = g.extract(raw_html=str(soup))

        # print(url)
        # print(soup)
        # news_empty = True

        possible_class = ['detail', 'body-content', 'article-content', 'detail-konten', 'DetailBlock']
        excluded_sentence = ['Komentar menjadi tanggung-jawab Anda sesuai UU ITE', 'Dapatkan berita terbaru dari kami Ikuti langkah ini untuk mendapatkan notifikasi:']

        if not article.cleaned_text:
            article_content = soup.find('div', class_=possible_class)
            if article_content and article_content.get_text() not in excluded_sentence:
                news_text.append(article_content.get_text())
                news_empty = False
                # print(f'{url} News Exist using POSSIBLE CLASS')
        else:
            if article.cleaned_text not in excluded_sentence:
                news_text.append(article.cleaned_text)
                news_empty = False
                # print(f'{url} News Exist using ARTICLE CLEANED TEXT')

        # if news_empty:
        #     print(f'Cannot Get URL: {url}')
            # print(soup)

        # print(article.cleaned_text)

        

        # goose = Goose()
        # config = Configuration()
        # config.strict = False  # turn of strict exception handling
        # config.browser_user_agent = 'Mozilla 5.0'  # set the browser agent string
        # config.http_timeout = 5.05  # set http timeout in seconds

        # with Goose(config) as g:
        #     article = goose.extract(url=url)

        #     news_text.append(article.cleaned_text)

    df = pd.DataFrame({
        'news': news_text
        })
    
    # Load the tokenizer and model
    tokenizer_esg = AutoTokenizer.from_pretrained("didev007/ESG-indobert-model")
    model_esg = AutoModelForSequenceClassification.from_pretrained("didev007/ESG-indobert-model")

    # Load the tokenizer and model
    tokenizer_sentiment = AutoTokenizer.from_pretrained("adhityaprimandhika/distillbert_sentiment_analysis")
    model_sentiment = AutoModelForSequenceClassification.from_pretrained("adhityaprimandhika/distillbert_sentiment_analysis")

    def get_chunk_weights(num_chunks):
        center = num_chunks / 2
        sigma = num_chunks / 4
        weights = [np.exp(-0.5 * ((i - center) / sigma) ** 2) for i in range(num_chunks)]
        weights = np.array(weights)
        return weights / weights.sum()

    def tokenize_and_chunk(text, tokenizer, chunk_size=512):
        inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        input_ids = inputs['input_ids'][0]
        
        chunks = [input_ids[i:i+chunk_size] for i in range(0, len(input_ids), chunk_size)]
        return chunks

    def esg_category(chunks, model):
        num_chunks = len(chunks)
        weights = get_chunk_weights(num_chunks)
        
        esg_scores = np.zeros(4)
        labels = ["none", "E", "S", "G"]
        
        for i, chunk in enumerate(chunks):
            inputs = {'input_ids': chunk.unsqueeze(0)}
            outputs = model(**inputs)
            logits = outputs.logits
            probs = F.softmax(logits, dim=1).detach().numpy()[0]
            esg_scores += weights[i] * probs

        predicted_class = esg_scores.argmax()
        aggregated_esg = labels[predicted_class]
        
        return aggregated_esg

    def sentiment_analysis(text, tokenizer, model):
        inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        outputs = model(**inputs)
        logits = outputs.logits
        predicted_class = torch.argmax(logits, dim=1).item()
        labels = ["positive", "neutral", "negative"]
        predicted_sentiment = labels[predicted_class]
        return predicted_sentiment

    def apply_model_to_dataframe(df, tokenizer_esg, model_esg, tokenizer_sentiment, model_sentiment, text_column='news'):
        esg_categories = []
        sentiments = []
        for text in df[text_column]:
            if isinstance(text, str): 
                chunks = tokenize_and_chunk(text, tokenizer_esg)
                esg = esg_category(chunks, model_esg)
                sentiment = sentiment_analysis(text, tokenizer_sentiment, model_sentiment)
                esg_categories.append(esg)
                sentiments.append(sentiment)
            else:
                esg_categories.append("none") 
                sentiments.append("neutral") 
        
        df['aggregated_esg'] = esg_categories
        df['sentiment'] = sentiments
        return df
    
    result_data = apply_model_to_dataframe(df, tokenizer_esg, model_esg, tokenizer_sentiment, model_sentiment)

    grouped_counts = df.groupby(['aggregated_esg', 'sentiment']).size().reset_index(name='count')
    data = grouped_counts.pivot(index='aggregated_esg', columns='sentiment', values='count')
    required_columns_sentiment = ['negative', 'positive', 'neutral']
    for col in required_columns_sentiment:
        if col not in data.columns:
            data[col] = 0

    # Handle potential missing values
    data['negative'] = data['negative'].fillna(0)
    data['positive'] = data['positive'].fillna(0)
    data['neutral'] = data['neutral'].fillna(0)

    # print(data)
    
    data['count'] = (data['negative']+data['positive']+data['neutral'])
    data['total'] = data['negative']/data['count'] + data['positive']*(-0.2)/data['count']
    # data['total'] = data['negative'] + data['positive']*(-1)
    if 'none' in data:
        data = data.drop('none')
    # data

    total = data['total'].sum()

    # Min-max normalization
    min_esg = -1
    max_esg = 2
    min_score = 0
    max_score = 60

    ESG_score = ((total - min_esg) / (max_esg - min_esg)) * (max_score - min_score) + min_score
    
    def esg_risk_categorization(esg_score):
        if esg_score <= 10:
            return 'Negligible'
        elif 10 < esg_score <= 20:
            return 'Low'
        elif 20 < esg_score <= 30:
            return 'Medium'
        elif 30 < esg_score <= 40:
            return 'High'
        else:
            return 'Severe'
        
    risk = esg_risk_categorization(ESG_score)

    st.write(company)
    log_detail = """
        Company: {}
        ESG Score Prediction: {}
        ESG Category Risk Prediction: {}
    """.format(company, ESG_score, risk)
    print(log_detail)

    st.write(f'ESG Category Risk Prediction: {risk}')