File size: 11,012 Bytes
a151177 12f677e a151177 0b1cc37 a151177 12f677e a151177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import streamlit as st
import re
import requests
from newspaper import Article
from newspaper import Config
import preprocessor as p
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import torch.nn.functional as F
from goose3 import Goose
from goose3.configuration import Configuration
from bs4 import BeautifulSoup
st.write("""
# ESG Prediction App
This is a Proof of Concept for a company ESG (Environmental, Social, and Governance) risk prediction application.
""")
company = st.text_input("Company", placeholder="PT Adaro Minerals Indonesia Tbk")
GOOGLE = 'https://www.google.com/search'
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Cafari/537.36'}
API_KEY = 'AIzaSyDCfIltnvAQ3lvpovRXydRMhGQ-VxkboQ4'
SEARCH_ENGINE_ID = 'e586ee8a6c7e64d7b'
from googleapiclient.discovery import build
import math
def google_search(search_term, api_key, cse_id, **kwargs):
service = build("customsearch", "v1", developerKey=api_key)
num_search_results = kwargs['num']
if num_search_results > 100:
raise NotImplementedError('Google Custom Search API supports max of 100 results')
elif num_search_results > 10:
kwargs['num'] = 10 # this cannot be > 10 in API call
calls_to_make = math.ceil(num_search_results / 10)
else:
calls_to_make = 1
kwargs['start'] = start_item = 1
items_to_return = []
while calls_to_make > 0:
res = service.cse().list(q=search_term, cx=cse_id, **kwargs).execute()
items_to_return.extend(res['items'])
calls_to_make -= 1
start_item += 10
kwargs['start'] = start_item
leftover = num_search_results - start_item + 1
if 0 < leftover < 10:
kwargs['num'] = leftover
return items_to_return
if company:
# print(f'Run: {company}')
links = []
news_text = []
query = f'{company}'
response = google_search(query, API_KEY, SEARCH_ENGINE_ID, num=50)
url_collection = [item['link'] for item in response]
import os
os.environ['ST_USER_AGENT'] = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'
user_agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36'
config = Config()
config.browser_user_agent = user_agent
config.request_timeout = 60
config.fetch_images = False
config.memoize_articles = True
config.language = 'id'
# p.set_options(p.OPT.MENTION, p.OPT.EMOJI, p.OPT.HASHTAG, p.OPT.RESERVED, p.OPT.SMILEY, p.OPT.URL)
def cleaner(text):
text = re.sub("@[A-Za-z0-9]+", "", text) #Remove @ sign
text = text.replace("#", "").replace("_", "") #Remove hashtag sign but keep the text
# text = p.clean(text) # Clean text from any mention, emoji, hashtag, reserve words(such as FAV, RT), smiley, and url
text = text.strip().replace("\n","")
return text
for url in url_collection:
if "http" not in url:
continue
lang = "id"
if "eco-business.com" in url or "thejakartapost.com" in url or "marketforces.org.au" in url or "jakartaglobe.id" in url:
lang = "en"
### Selenium
# from selenium import webdriver
# from selenium.webdriver.chrome.options import Options
# from goose3 import Goose
# options = Options()
# options.headless = True
# options.add_argument("user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36")
# driver = webdriver.Chrome(options=options)
# # url = 'https://example.com/news-article'
# driver.get(url)
# html = driver.page_source
# driver.quit()
# g = Goose()
# article = g.extract(raw_html=html)
# print(article.cleaned_text)
# news_text.append(article.cleaned_text)
###
# article = Article(url, language=lang, config=config)
# article.download()
# article.parse()
# article_clean = cleaner(article.text)
# url = 'https://example.com/news-article'
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}
response = requests.get(url, headers=headers)
# html = response.text
soup = BeautifulSoup(response.content, 'html.parser')
g = Goose()
article = g.extract(raw_html=str(soup))
# print(url)
# print(soup)
# news_empty = True
possible_class = ['detail', 'body-content', 'article-content', 'detail-konten', 'DetailBlock']
excluded_sentence = ['Komentar menjadi tanggung-jawab Anda sesuai UU ITE', 'Dapatkan berita terbaru dari kami Ikuti langkah ini untuk mendapatkan notifikasi:']
if not article.cleaned_text:
article_content = soup.find('div', class_=possible_class)
if article_content and article_content.get_text() not in excluded_sentence:
news_text.append(article_content.get_text())
news_empty = False
# print(f'{url} News Exist using POSSIBLE CLASS')
else:
if article.cleaned_text not in excluded_sentence:
news_text.append(article.cleaned_text)
news_empty = False
# print(f'{url} News Exist using ARTICLE CLEANED TEXT')
# if news_empty:
# print(f'Cannot Get URL: {url}')
# print(soup)
# print(article.cleaned_text)
# goose = Goose()
# config = Configuration()
# config.strict = False # turn of strict exception handling
# config.browser_user_agent = 'Mozilla 5.0' # set the browser agent string
# config.http_timeout = 5.05 # set http timeout in seconds
# with Goose(config) as g:
# article = goose.extract(url=url)
# news_text.append(article.cleaned_text)
df = pd.DataFrame({
'news': news_text
})
# Load the tokenizer and model
tokenizer_esg = AutoTokenizer.from_pretrained("didev007/ESG-indobert-model")
model_esg = AutoModelForSequenceClassification.from_pretrained("didev007/ESG-indobert-model")
# Load the tokenizer and model
tokenizer_sentiment = AutoTokenizer.from_pretrained("adhityaprimandhika/distillbert_sentiment_analysis")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("adhityaprimandhika/distillbert_sentiment_analysis")
def get_chunk_weights(num_chunks):
center = num_chunks / 2
sigma = num_chunks / 4
weights = [np.exp(-0.5 * ((i - center) / sigma) ** 2) for i in range(num_chunks)]
weights = np.array(weights)
return weights / weights.sum()
def tokenize_and_chunk(text, tokenizer, chunk_size=512):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
input_ids = inputs['input_ids'][0]
chunks = [input_ids[i:i+chunk_size] for i in range(0, len(input_ids), chunk_size)]
return chunks
def esg_category(chunks, model):
num_chunks = len(chunks)
weights = get_chunk_weights(num_chunks)
esg_scores = np.zeros(4)
labels = ["none", "E", "S", "G"]
for i, chunk in enumerate(chunks):
inputs = {'input_ids': chunk.unsqueeze(0)}
outputs = model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).detach().numpy()[0]
esg_scores += weights[i] * probs
predicted_class = esg_scores.argmax()
aggregated_esg = labels[predicted_class]
return aggregated_esg
def sentiment_analysis(text, tokenizer, model):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
labels = ["positive", "neutral", "negative"]
predicted_sentiment = labels[predicted_class]
return predicted_sentiment
def apply_model_to_dataframe(df, tokenizer_esg, model_esg, tokenizer_sentiment, model_sentiment, text_column='news'):
esg_categories = []
sentiments = []
for text in df[text_column]:
if isinstance(text, str):
chunks = tokenize_and_chunk(text, tokenizer_esg)
esg = esg_category(chunks, model_esg)
sentiment = sentiment_analysis(text, tokenizer_sentiment, model_sentiment)
esg_categories.append(esg)
sentiments.append(sentiment)
else:
esg_categories.append("none")
sentiments.append("neutral")
df['aggregated_esg'] = esg_categories
df['sentiment'] = sentiments
return df
result_data = apply_model_to_dataframe(df, tokenizer_esg, model_esg, tokenizer_sentiment, model_sentiment)
grouped_counts = df.groupby(['aggregated_esg', 'sentiment']).size().reset_index(name='count')
data = grouped_counts.pivot(index='aggregated_esg', columns='sentiment', values='count')
required_columns_sentiment = ['negative', 'positive', 'neutral']
for col in required_columns_sentiment:
if col not in data.columns:
data[col] = 0
# Handle potential missing values
data['negative'] = data['negative'].fillna(0)
data['positive'] = data['positive'].fillna(0)
data['neutral'] = data['neutral'].fillna(0)
# print(data)
data['count'] = (data['negative']+data['positive']+data['neutral'])
data['total'] = data['negative']/data['count'] + data['positive']*(-0.2)/data['count']
# data['total'] = data['negative'] + data['positive']*(-1)
if 'none' in data:
data = data.drop('none')
# data
total = data['total'].sum()
# Min-max normalization
min_esg = -1
max_esg = 2
min_score = 0
max_score = 60
ESG_score = ((total - min_esg) / (max_esg - min_esg)) * (max_score - min_score) + min_score
def esg_risk_categorization(esg_score):
if esg_score <= 10:
return 'Negligible'
elif 10 < esg_score <= 20:
return 'Low'
elif 20 < esg_score <= 30:
return 'Medium'
elif 30 < esg_score <= 40:
return 'High'
else:
return 'Severe'
risk = esg_risk_categorization(ESG_score)
st.write(company)
log_detail = """
Company: {}
ESG Score Prediction: {}
ESG Category Risk Prediction: {}
""".format(company, ESG_score, risk)
print(log_detail)
st.write(f'ESG Category Risk Prediction: {risk}')
|