Spaces:
Runtime error
Runtime error
Upload final_run_concurrent.py
Browse files- final_run_concurrent.py +205 -0
final_run_concurrent.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Final Run-Concurrent
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/19foLOwCXRH0e0P_Xqqc-9VgpnmjYyAX8
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Install the Necessary Packages
|
11 |
+
|
12 |
+
!pip install datasets huggingface_hub sentence-transformers gradio evaluate
|
13 |
+
!pip install git+https://github.com/huggingface/accelerate
|
14 |
+
!pip install transformers==4.28.0
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
from datasets import load_dataset
|
18 |
+
import pandas
|
19 |
+
from PIL import Image
|
20 |
+
import cv2
|
21 |
+
import os
|
22 |
+
from pandas import read_csv
|
23 |
+
from google.colab import drive
|
24 |
+
|
25 |
+
drive.mount('/content/drive/')
|
26 |
+
|
27 |
+
raw_dataset = load_dataset("imagefolder", data_dir="/content/drive/MyDrive/california_fire_damage_classification_merged/train")
|
28 |
+
dataset = raw_dataset["train"].train_test_split(test_size=0.2, stratify_by_column="label")
|
29 |
+
|
30 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
31 |
+
import torch
|
32 |
+
|
33 |
+
device = 'cuda' # for GPU
|
34 |
+
|
35 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
|
36 |
+
|
37 |
+
model.eval()
|
38 |
+
#model.to(device);
|
39 |
+
|
40 |
+
# image_processor is the same as Tokenizer
|
41 |
+
extractor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
|
42 |
+
|
43 |
+
labels = raw_dataset['train'].features['label'].names
|
44 |
+
|
45 |
+
labels
|
46 |
+
|
47 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, AutoTokenizer
|
48 |
+
|
49 |
+
extractor = AutoFeatureExtractor.from_pretrained("/content/drive/MyDrive/california_fire_damage_classification_merged/saved_model_files")
|
50 |
+
model = AutoModelForImageClassification.from_pretrained("/content/drive/MyDrive/california_fire_damage_classification_merged/saved_model_files")
|
51 |
+
|
52 |
+
import torch
|
53 |
+
|
54 |
+
def transform(example_batch):
|
55 |
+
inputs = extractor([x.convert("RGB") for x in example_batch['image']], return_tensors='pt')
|
56 |
+
inputs['labels'] = example_batch['label']
|
57 |
+
return inputs
|
58 |
+
|
59 |
+
prepared_ds = dataset.with_transform(transform)
|
60 |
+
|
61 |
+
### RUNNING EVALUATION ON PRETRAINED MODEL
|
62 |
+
|
63 |
+
from transformers import TrainingArguments, Trainer
|
64 |
+
|
65 |
+
training_args = TrainingArguments("test_trainer"),
|
66 |
+
|
67 |
+
|
68 |
+
import numpy as np
|
69 |
+
from datasets import load_metric
|
70 |
+
|
71 |
+
metric = load_metric("accuracy")
|
72 |
+
|
73 |
+
|
74 |
+
def compute_metrics(eval_pred):
|
75 |
+
logits, labels = eval_pred
|
76 |
+
predictions = np.argmax(logits, axis=-1)
|
77 |
+
return metric.compute(predictions=predictions, references=labels)
|
78 |
+
|
79 |
+
|
80 |
+
trainer = Trainer(
|
81 |
+
model=model,
|
82 |
+
args=training_args,
|
83 |
+
train_dataset=None,
|
84 |
+
eval_dataset=prepared_ds['test'],
|
85 |
+
compute_metrics=compute_metrics,
|
86 |
+
)
|
87 |
+
|
88 |
+
j = 2095
|
89 |
+
|
90 |
+
print('Groundtruth: ', y_test_np[j], ' ', labels[y_test_np[j]], 'Prediction: ', y_predicts_np[j], ' ', labels[y_predicts_np[j]])
|
91 |
+
dataset['test'][j]['image']
|
92 |
+
|
93 |
+
pixel_values_array = []
|
94 |
+
y_test = []
|
95 |
+
counter = 0
|
96 |
+
|
97 |
+
for img_pair in prepared_ds['test']:
|
98 |
+
pixel_values_array.append(img_pair['pixel_values'])
|
99 |
+
y_test.append(img_pair["labels"])
|
100 |
+
#pixel_values_tensor = torch.concat((pixel_values_tensor, img_pair['pixel_values']), 0)
|
101 |
+
counter += 1
|
102 |
+
print(counter)
|
103 |
+
|
104 |
+
#pixel_values_tensor = torch.stack(pixel_values_array)
|
105 |
+
|
106 |
+
#pixel_values_tensor
|
107 |
+
|
108 |
+
len(pixel_values_tensor)
|
109 |
+
len(y_predicts_merged)
|
110 |
+
|
111 |
+
import numpy as np
|
112 |
+
y_test_np = np.array(y_test)
|
113 |
+
y_predicts_np = np.array(y_predicts_merged)
|
114 |
+
|
115 |
+
np.where((y_test_np == y_predicts_np) == False)
|
116 |
+
|
117 |
+
y_predicts = []
|
118 |
+
|
119 |
+
for i in range(len(pixel_values_tensor)):
|
120 |
+
logits = model(pixel_values_tensor[i:i+1])[-1]
|
121 |
+
y_predict = [logit.argmax(-1).item() for logit in logits]
|
122 |
+
y_predicts.append(y_predict)
|
123 |
+
|
124 |
+
y_predicts
|
125 |
+
|
126 |
+
y_predicts_merged = [inner for outer in y_predicts for inner in outer]
|
127 |
+
|
128 |
+
y_predicts_merged
|
129 |
+
|
130 |
+
logits = model(pixel_values_tensor[0:1])[-1]
|
131 |
+
|
132 |
+
logits
|
133 |
+
|
134 |
+
y_predict = [logit.argmax(-1).item() for logit in logits]
|
135 |
+
y_predict
|
136 |
+
|
137 |
+
#y_test = [img_pair["labels"] for img_pair in prepared_ds['test']]
|
138 |
+
y_test = prepared_ds['test'][0:100]["labels"]
|
139 |
+
y_test
|
140 |
+
|
141 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
142 |
+
|
143 |
+
print(confusion_matrix(y_test, y_predicts_merged))
|
144 |
+
print(classification_report(y_test, y_predicts_merged))
|
145 |
+
|
146 |
+
probability = torch.nn.functional.softmax(logits, dim=-1)
|
147 |
+
probability
|
148 |
+
|
149 |
+
probs = probability.detach().numpy()
|
150 |
+
probs
|
151 |
+
|
152 |
+
confidences = [{label: float(prob[j]) for j, label in enumerate(labels)} for prob in probs]
|
153 |
+
confidences
|
154 |
+
|
155 |
+
# First we get the features corresponding to the first training image
|
156 |
+
encoding = image_processor(images=prepared_ds['test'][0]['image'], return_tensors="pt").to(device)
|
157 |
+
|
158 |
+
# Then pass it through the model and get a prediction
|
159 |
+
|
160 |
+
######
|
161 |
+
outputs = model(**encoding)
|
162 |
+
logits = outputs.logits
|
163 |
+
######
|
164 |
+
|
165 |
+
prediction = logits.argmax(-1).item()
|
166 |
+
|
167 |
+
print("Predicted class:", model.config.id2label[prediction])
|
168 |
+
|
169 |
+
# For 1 Sample -> look at distribution of probabilities assigned
|
170 |
+
|
171 |
+
tokenizer = AutoTokenizer.from_pretrained("google/vit-base-patch16-224")
|
172 |
+
|
173 |
+
def tokenize_function(examples):
|
174 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
175 |
+
|
176 |
+
encoding = image_processor(images=[prepared_ds["test"][0]['image']], return_tensors="pt").to(device)
|
177 |
+
outputs = model(**encoding)
|
178 |
+
logits = outputs.logits
|
179 |
+
prediction = logits.argmax(-1).item()
|
180 |
+
|
181 |
+
print("Predicted class:", model.config.id2label[prediction])
|
182 |
+
|
183 |
+
im_test = [dataset['test'][0]['image'], dataset['test'][1]['image']]
|
184 |
+
features_test = extractor(im_test, return_tensors='pt')
|
185 |
+
features_test['pixel_values'][0]
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
features_test['pixel_values'][-1]
|
190 |
+
|
191 |
+
logits = model(features_test["pixel_values"])
|
192 |
+
logits[-1]
|
193 |
+
|
194 |
+
probability = torch.nn.functional.softmax(logits, dim=-1)
|
195 |
+
|
196 |
+
logits = model(features_test["pixel_values"])[-1]
|
197 |
+
|
198 |
+
probs = probability[0].detach().numpy()
|
199 |
+
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
|
200 |
+
|
201 |
+
probability = torch.nn.functional.softmax(logits, dim=-1)
|
202 |
+
probability
|
203 |
+
|
204 |
+
prepared_ds['test'][0]['pixel_values']
|
205 |
+
|