import transformers import torch from datasets import load_dataset, Image from transformers import AutoFeatureExtractor, AutoModelForImageClassification, ViTImageProcessor, ViTForImageClassification image_processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = ['affected', 'destroyed', 'no_damage'] def classify(im): features = image_processor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences import gradio as gr interface = gr.Interface( fn=classify, inputs="image", outputs="label" ) interface.launch(share=True, debug=True)