Spaces:
Runtime error
Runtime error
File size: 6,828 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Get CAM activation."""
import cv2
import numpy as np
import torch
_EPSILON = 1e-15
def scale_cam_image(cam, target_size=None):
"""Normalize and rescale cam image."""
result = []
for img in cam:
img = img - np.min(img)
img = img / (_EPSILON + np.max(img))
if target_size is not None:
img = cv2.resize(img, target_size)
result.append(img)
result = np.float32(result)
return result
class ActivationsAndGradients:
"""Class for extracting activations and registering gradients from targetted intermediate layers."""
def __init__(self, model, target_layers, reshape_transform, stride=16):
self.model = model
self.gradients = []
self.activations = []
self.reshape_transform = reshape_transform
self.handles = []
self.stride = stride
for target_layer in target_layers:
self.handles.append(
target_layer.register_forward_hook(self.save_activation)
)
# Because of https://github.com/pytorch/pytorch/issues/61519,
# we don't use backward hook to record gradients.
self.handles.append(
target_layer.register_forward_hook(self.save_gradient)
)
# pylint: disable=unused-argument
# pylint: disable=redefined-builtin
def save_activation(self, module, input, output):
"""Saves activations from targetted layer."""
activation = output
if self.reshape_transform is not None:
activation = self.reshape_transform(activation, self.height, self.width)
self.activations.append(activation.cpu().detach())
def save_gradient(self, module, input, output):
if not hasattr(output, "requires_grad") or not output.requires_grad:
# You can only register hooks on tensor requires grad.
return
# Gradients are computed in reverse order
def _store_grad(grad):
if self.reshape_transform is not None:
grad = self.reshape_transform(grad, self.height, self.width)
self.gradients = [grad.cpu().detach()] + self.gradients
output.register_hook(_store_grad)
# pylint: enable=unused-argument
# pylint: enable=redefined-builtin
def __call__(self, x, h, w):
self.height = h // self.stride
self.width = w // self.stride
self.gradients = []
self.activations = []
if isinstance(x, tuple) or isinstance(x, list):
return self.model.forward_last_layer(x[0], x[1])
else:
return self.model(x)
def release(self):
for handle in self.handles:
handle.remove()
# pylint: disable=g-bare-generic
class CAM:
"""CAM module."""
def __init__(
self,
model,
target_layers,
use_cuda=False,
reshape_transform=None,
compute_input_gradient=False,
stride=16,
):
self.model = model.eval()
self.target_layers = target_layers
self.cuda = use_cuda
self.model = model.cuda() if self.cuda else self.model
self.reshape_transform = reshape_transform
self.compute_input_gradient = compute_input_gradient
self.activations_and_grads = ActivationsAndGradients(
self.model, target_layers, reshape_transform, stride=stride
)
def get_cam(self, activations, grads):
weights = np.mean(grads, axis=(2, 3))
weighted_activations = weights[:, :, None, None] * activations
cam = weighted_activations.sum(axis=1)
return cam
def forward(
self,
input_tensor,
targets,
target_size,
):
"""CAM forward pass."""
if self.compute_input_gradient:
input_tensor = torch.autograd.Variable(input_tensor, requires_grad=True)
w, h = self.get_target_width_height(input_tensor)
outputs = self.activations_and_grads(input_tensor, h, w)
self.model.zero_grad()
if isinstance(input_tensor, (tuple, list)):
loss = sum(
[target(output[0]) for target, output in zip(targets, outputs)]
)
else:
loss = sum([target(output) for target, output in zip(targets, outputs)])
loss.backward(retain_graph=True)
cam_per_layer = self.compute_cam_per_layer(target_size)
if isinstance(input_tensor, (tuple, list)):
return (
self.aggregate_multi_layers(cam_per_layer),
outputs[0],
outputs[1],
)
else:
return self.aggregate_multi_layers(cam_per_layer), outputs
def get_target_width_height(self, input_tensor):
width = None
height = None
if isinstance(input_tensor, (tuple, list)):
width, height = input_tensor[-1], input_tensor[-2]
return width, height
def compute_cam_per_layer(self, target_size):
"""Computes cam per target layer."""
activations_list = [
a.cpu().data.numpy() for a in self.activations_and_grads.activations
]
grads_list = [
g.cpu().data.numpy() for g in self.activations_and_grads.gradients
]
cam_per_target_layer = []
# Loop over the saliency image from every layer
for i in range(len(self.target_layers)):
layer_activations = None
layer_grads = None
if i < len(activations_list):
layer_activations = activations_list[i]
if i < len(grads_list):
layer_grads = grads_list[i]
cam = self.get_cam(layer_activations, layer_grads)
cam = np.maximum(cam, 0).astype(np.float32) # float16->32
scaled = scale_cam_image(cam, target_size)
cam_per_target_layer.append(scaled[:, None, :])
return cam_per_target_layer
def aggregate_multi_layers(self, cam_per_target_layer):
cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
result = np.mean(cam_per_target_layer, axis=1)
return scale_cam_image(result)
def __call__(
self,
input_tensor,
targets=None,
target_size=None,
):
return self.forward(input_tensor, targets, target_size)
def __del__(self):
self.activations_and_grads.release()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
self.activations_and_grads.release()
if isinstance(exc_value, IndexError):
# Handle IndexError here...
print(
f"An exception occurred in CAM with block: {exc_type}. "
f"Message: {exc_value}"
)
return True
|