Spaces:
Runtime error
Runtime error
File size: 11,562 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of CaR."""
import os
import clip
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
# pylint: disable=g-importing-member
# pylint: disable=g-bad-import-order
from modeling.model.clip_wrapper import CLIPWrapper
from modeling.model.clip_wrapper import forward_clip
from modeling.model.clipcam import CLIPCAM
from modeling.model.crf import PostProcess
from modeling.model.utils import apply_visual_prompts
from utils.visualize import viz_attn
class CaR(nn.Module):
"""CaR module."""
def __init__(
self,
cfg,
device="cpu",
visualize=False,
confidence_threshold=0.45,
save_path="save_path",
seg_mode="refer",
semantic_clip_model_name=None,
semantic_pretrained_data=None,
semantic_templates=None,
text_template=None,
visual_prompt_type="circle",
clipes_threshold=0.4,
cam_text_template="a clean origami {}.",
bg_cls=None,
iom_thres=0.6,
min_pred_threshold=0.01,
bg_factor=1.0,
mask_threshold=0.5,
):
"""CaR model for image segmentation.
Args:
cfg: the config file.
device: the device to run the model.
visualize: whether to visualize the intermediate results
confidence_threshold: the confidence threshold for semantic
segmentation. If the confidence score is lower than the threshold, the
mask will be discarded.
save_path: the path to save the intermediate results
seg_mode: the segmentation mode, can be 'refer' or 'semantic'
semantic_clip_model_name: the name of the semantic segmentation model.
semantic_pretrained_data: the path to the pretrained semantic
segmentation model.
semantic_templates: the templates for semantic segmentation.
text_template: the template for visual prompting.
visual_prompt_type: the type of visual prompting.
clipes_threshold: the threshold for CLIPES.
cam_text_template: the template for CAM.
bg_cls: background classes.
iom_thres: IoM threshold.
min_pred_threshold: Prediction threshold.
bg_factor: Background factor.
mask_threshold: Mask threshold.
"""
super(CaR, self).__init__()
# CLIP parameters
self.confidence_threshold = confidence_threshold
self.device = device
self.visualize = visualize
self.save_path = save_path
self.seg_mode = seg_mode
self.semantic_clip_model_name = semantic_clip_model_name
self.semantic_pretrained_data = semantic_pretrained_data
self.semantic_templates = semantic_templates
self.text_template = text_template
self.visual_prompt_type = visual_prompt_type
self.clipes_threshold = clipes_threshold
self.cam_text_template = cam_text_template
self.iom_thres = iom_thres
self.min_pred_threshold = min_pred_threshold
self.bg_cls = bg_cls
self.bg_factor = bg_factor
self.mask_threshold = mask_threshold
if not hasattr(cfg, "clip"):
raise ValueError("The config file should contain the CLIP parameters.")
if not hasattr(cfg, "car"):
raise ValueError("The config file should contain the car parameters.")
if hasattr(cfg, "cam"):
raise ValueError("cfg.cam is deprecated, please use cfg.car ")
for k, v in vars(cfg.clip).items():
setattr(self, k, v)
for k, v in vars(cfg.car).items():
setattr(self, k, v)
if hasattr(cfg, "sam"):
for k, v in vars(cfg.sam).items():
setattr(self, k, v)
if not self.bg_cls:
self.bg_cls = None
print(f"The model is running on {self.device}")
self.clip_model, self.preprocess = clip.load(
self.clip_model_name, device=self.device
)
self.clip_model = CLIPWrapper(self.clip_model)
self.post_process = PostProcess(device=self.device)
self.mask_generator = CLIPCAM(
self.clip_model,
device=self.device,
text_template=self.text_template,
threshold=self.clipes_threshold,
bg_cls=self.bg_cls,
)
self.semantic_clip_model, self.semantic_preprocess = clip.load(
self.semantic_clip_model_name, device=self.device
)
self.semantic_clip_model = CLIPWrapper(self.semantic_clip_model)
def get_confidence(self, cam_map, binary_cam_map):
confidence_map = torch.sum(cam_map * binary_cam_map[None], dim=[2, 3])
confidence_map = confidence_map / torch.sum(binary_cam_map, dim=[1, 2])
confidence_score = confidence_map.squeeze()
return confidence_score
def set_visual_prompt_type(self, visual_prompt_type):
self.visual_prompt_type = visual_prompt_type
def set_bg_factor(self, bg_factor):
self.bg_factor = bg_factor
def set_confidence_threshold(self, confidence_threshold):
self.confidence_threshold = confidence_threshold
def set_mask_threshold(self, mask_threshold):
self.mask_threshold = mask_threshold
def apply_visual_prompts(self, image, mask):
if torch.sum(mask).item() <= 1:
return image
image_array = np.array(image)
img_h = image_array.shape[0]
img_w = image_array.shape[1]
mask = (
F.interpolate(mask[None][None], size=(img_h, img_w), mode="nearest")
.squeeze()
.detach()
.cpu()
.numpy()
)
mask = (mask > self.mask_threshold).astype(np.uint8)
prompted_image = apply_visual_prompts(
image_array, mask, self.visual_prompt_type, self.visualize
)
return prompted_image
def get_mask_confidence(self, prompted_images, prompt_text):
"""Get the confidene for each mask with visual prompting."""
# get the center, width and height of the mask
prompted_tensor = torch.stack(
[self.semantic_preprocess(img) for img in prompted_images], dim=0
)
prompted_tensor = prompted_tensor.to(self.device)
h, w = prompted_tensor.shape[-2:]
text_prediction = forward_clip(
self.semantic_clip_model, prompted_tensor, prompt_text, h, w
)
return text_prediction
def _filter_texts(self, ori_mask_id, sem_scores, prompt_text):
"""Remove false positive masks by score filtering and recall the backbone to get the CAM maps for the filtered texts."""
if not ori_mask_id:
max_id = np.argmax(sem_scores)
ori_mask_id.append(max_id)
filtered_text = [prompt_text[i] for i in ori_mask_id]
return filtered_text
def _forward_stage(self, ori_img, cam_text, clip_text, semantic_prompt_text):
mask_proposals = self.get_mask_proposals(ori_img, cam_text)
num_texts = len(cam_text)
ori_mask_id = []
sem_scores = torch.zeros((num_texts,), device=self.device).float()
prompted_imgs = [
self.apply_visual_prompts(ori_img, cam_map)
for cam_map in mask_proposals
]
text_scores = self.get_mask_confidence(prompted_imgs, semantic_prompt_text)
mask_scores = torch.diagonal(text_scores)
for mask_idx, mask_score in enumerate(mask_scores):
# record mask idx
if mask_score > self.confidence_threshold:
ori_mask_id.append(mask_idx)
sem_scores[mask_idx] = mask_score
sem_scores = sem_scores.cpu().detach().numpy()
filtered_texts = self._filter_texts(ori_mask_id, sem_scores, clip_text)
# if isinstance(ori_img, list):
# ori_img = [ori_img[i] for i in ori_mask_id]
all_scores = torch.zeros((num_texts,), device=self.device).float()
sem_scores = torch.from_numpy(sem_scores).to(self.device)
for new_id, ori_id in enumerate(ori_mask_id):
if new_id >= len(mask_proposals):
# the mask is filtered out.
continue
all_scores[ori_id] = sem_scores[ori_id]
return filtered_texts, all_scores, mask_proposals
def _get_save_path(self, text):
folder_name = "_".join([t.replace(" ", "_") for t in text])
if len(folder_name) > 20:
folder_name = folder_name[:20]
output_path = os.path.join(self.save_path, folder_name)
sub_output_path = [
os.path.join(output_path, t.replace(" ", "_")) for t in text
]
return output_path, sub_output_path
def get_mask_proposals(self, img, text):
if self.seg_mode == "refer":
if isinstance(img, list):
cam_map_list = [self.mask_generator(i, t)[0] for i, t in zip(img, text)]
else:
cam_map_list = [self.mask_generator(img, t)[0] for t in text]
return torch.cat(cam_map_list, dim=0)
elif self.seg_mode == "semantic":
return self.mask_generator(img, text)[0]
else:
raise ValueError(
"Unknown segmentation mode. Only refer and semantic segmentation are"
" supported."
)
def _forward_car(self, ori_img, text):
if isinstance(text, str):
text = [text]
_, sub_output_path = self._get_save_path(text)
image_array = np.array(ori_img)
clip_text = [self.cam_text_template.format(t) for t in text]
cam_text = text
init_clip_text = clip_text # the text prompts of CLIP is different.
semantic_prompt_text = clip_text
# Apply semantic prompting augmentation.
if self.semantic_templates is not None:
semantic_prompt_text = []
for template in self.semantic_templates:
templated_text = [template.format(t) for t in text]
semantic_prompt_text.append(templated_text)
num_positive_last = 0
run = 0
while True:
run += 1
cur_texts, all_scores, mask_proposals = self._forward_stage(
ori_img, cam_text, clip_text, semantic_prompt_text
)
if cur_texts: # if there is no text, skip the refinement
cam_text = cur_texts
clip_text = cur_texts
num_positive = (all_scores > 0).sum().item()
if num_positive == num_positive_last:
# stop the refinement if the number of positive masks
# does not change.
break
num_positive_last = num_positive
# Apply densecrf for refinement.
# SAM is optional and is applied outside the model.
refined_masks = self.post_process(
ori_img,
mask_proposals,
separate=self.seg_mode == "refer",
bg_factor=self.bg_factor,
)
predicted_class_idx = [init_clip_text.index(t) for t in cur_texts]
if self.visualize:
_ = [
viz_attn(
image_array,
attn,
prefix=sub_output_path[aid],
img_name="semantic_mask",
)
for aid, attn in enumerate(refined_masks)
]
final_predicted_masks = torch.zeros(len(text), *refined_masks[0].shape)
final_all_scores = torch.zeros(len(text))
for idx, mask, score in zip(predicted_class_idx, refined_masks, all_scores):
final_predicted_masks[idx] = mask
final_all_scores[idx] = score
return final_predicted_masks, final_all_scores
def forward(self, im_ori, text):
# raw_image_np is the padded image input with shape (512, 512, 3)
pseudo_masks, conf_scores = self._forward_car(im_ori, text)
return pseudo_masks, conf_scores
|