File size: 11,562 Bytes
6cd90b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Implementation of CaR."""

import os

import clip
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F

# pylint: disable=g-importing-member
# pylint: disable=g-bad-import-order
from modeling.model.clip_wrapper import CLIPWrapper
from modeling.model.clip_wrapper import forward_clip
from modeling.model.clipcam import CLIPCAM
from modeling.model.crf import PostProcess
from modeling.model.utils import apply_visual_prompts
from utils.visualize import viz_attn


class CaR(nn.Module):
  """CaR module."""

  def __init__(
      self,
      cfg,
      device="cpu",
      visualize=False,
      confidence_threshold=0.45,
      save_path="save_path",
      seg_mode="refer",
      semantic_clip_model_name=None,
      semantic_pretrained_data=None,
      semantic_templates=None,
      text_template=None,
      visual_prompt_type="circle",
      clipes_threshold=0.4,
      cam_text_template="a clean origami {}.",
      bg_cls=None,
      iom_thres=0.6,
      min_pred_threshold=0.01,
      bg_factor=1.0,
      mask_threshold=0.5,
  ):
    """CaR model for image segmentation.

    Args:
        cfg: the config file.
        device: the device to run the model.
        visualize: whether to visualize the intermediate results
        confidence_threshold: the confidence threshold for semantic
          segmentation. If the confidence score is lower than the threshold, the
          mask will be discarded.
        save_path: the path to save the intermediate results
        seg_mode: the segmentation mode, can be 'refer' or 'semantic'
        semantic_clip_model_name: the name of the semantic segmentation model.
        semantic_pretrained_data: the path to the pretrained semantic
          segmentation model.
        semantic_templates: the templates for semantic segmentation.
        text_template: the template for visual prompting.
        visual_prompt_type: the type of visual prompting.
        clipes_threshold: the threshold for CLIPES.
        cam_text_template: the template for CAM.
        bg_cls: background classes.
        iom_thres: IoM threshold.
        min_pred_threshold: Prediction threshold.
        bg_factor: Background factor.
        mask_threshold: Mask threshold.
    """
    super(CaR, self).__init__()
    # CLIP parameters
    self.confidence_threshold = confidence_threshold
    self.device = device
    self.visualize = visualize
    self.save_path = save_path
    self.seg_mode = seg_mode
    self.semantic_clip_model_name = semantic_clip_model_name
    self.semantic_pretrained_data = semantic_pretrained_data
    self.semantic_templates = semantic_templates
    self.text_template = text_template
    self.visual_prompt_type = visual_prompt_type
    self.clipes_threshold = clipes_threshold
    self.cam_text_template = cam_text_template
    self.iom_thres = iom_thres
    self.min_pred_threshold = min_pred_threshold
    self.bg_cls = bg_cls
    self.bg_factor = bg_factor
    self.mask_threshold = mask_threshold

    if not hasattr(cfg, "clip"):
      raise ValueError("The config file should contain the CLIP parameters.")

    if not hasattr(cfg, "car"):
      raise ValueError("The config file should contain the car parameters.")

    if hasattr(cfg, "cam"):
      raise ValueError("cfg.cam is deprecated, please use cfg.car ")

    for k, v in vars(cfg.clip).items():
      setattr(self, k, v)

    for k, v in vars(cfg.car).items():
      setattr(self, k, v)

    if hasattr(cfg, "sam"):
      for k, v in vars(cfg.sam).items():
        setattr(self, k, v)
    if not self.bg_cls:
      self.bg_cls = None
    print(f"The model is running on {self.device}")
    self.clip_model, self.preprocess = clip.load(
        self.clip_model_name, device=self.device
    )
    self.clip_model = CLIPWrapper(self.clip_model)
    self.post_process = PostProcess(device=self.device)
    self.mask_generator = CLIPCAM(
        self.clip_model,
        device=self.device,
        text_template=self.text_template,
        threshold=self.clipes_threshold,
        bg_cls=self.bg_cls,
    )
    self.semantic_clip_model, self.semantic_preprocess = clip.load(
        self.semantic_clip_model_name, device=self.device
    )
    self.semantic_clip_model = CLIPWrapper(self.semantic_clip_model)

  def get_confidence(self, cam_map, binary_cam_map):
    confidence_map = torch.sum(cam_map * binary_cam_map[None], dim=[2, 3])
    confidence_map = confidence_map / torch.sum(binary_cam_map, dim=[1, 2])
    confidence_score = confidence_map.squeeze()
    return confidence_score

  def set_visual_prompt_type(self, visual_prompt_type):
    self.visual_prompt_type = visual_prompt_type

  def set_bg_factor(self, bg_factor):
    self.bg_factor = bg_factor

  def set_confidence_threshold(self, confidence_threshold):
    self.confidence_threshold = confidence_threshold

  def set_mask_threshold(self, mask_threshold):
    self.mask_threshold = mask_threshold

  def apply_visual_prompts(self, image, mask):
    if torch.sum(mask).item() <= 1:
      return image
    image_array = np.array(image)
    img_h = image_array.shape[0]
    img_w = image_array.shape[1]
    mask = (
        F.interpolate(mask[None][None], size=(img_h, img_w), mode="nearest")
        .squeeze()
        .detach()
        .cpu()
        .numpy()
    )
    mask = (mask > self.mask_threshold).astype(np.uint8)
    prompted_image = apply_visual_prompts(
        image_array, mask, self.visual_prompt_type, self.visualize
    )
    return prompted_image

  def get_mask_confidence(self, prompted_images, prompt_text):
    """Get the confidene for each mask with visual prompting."""
    # get the center, width and height of the mask
    prompted_tensor = torch.stack(
        [self.semantic_preprocess(img) for img in prompted_images], dim=0
    )
    prompted_tensor = prompted_tensor.to(self.device)
    h, w = prompted_tensor.shape[-2:]
    text_prediction = forward_clip(
        self.semantic_clip_model, prompted_tensor, prompt_text, h, w
    )
    return text_prediction

  def _filter_texts(self, ori_mask_id, sem_scores, prompt_text):
    """Remove false positive masks by score filtering and recall the backbone to get the CAM maps for the filtered texts."""
    if not ori_mask_id:
      max_id = np.argmax(sem_scores)
      ori_mask_id.append(max_id)
    filtered_text = [prompt_text[i] for i in ori_mask_id]
    return filtered_text

  def _forward_stage(self, ori_img, cam_text, clip_text, semantic_prompt_text):
    mask_proposals = self.get_mask_proposals(ori_img, cam_text)
    num_texts = len(cam_text)
    ori_mask_id = []
    sem_scores = torch.zeros((num_texts,), device=self.device).float()
    prompted_imgs = [
        self.apply_visual_prompts(ori_img, cam_map)
        for cam_map in mask_proposals
    ]
    text_scores = self.get_mask_confidence(prompted_imgs, semantic_prompt_text)
    mask_scores = torch.diagonal(text_scores)
    for mask_idx, mask_score in enumerate(mask_scores):
      # record mask idx
      if mask_score > self.confidence_threshold:
        ori_mask_id.append(mask_idx)
      sem_scores[mask_idx] = mask_score
    sem_scores = sem_scores.cpu().detach().numpy()
    filtered_texts = self._filter_texts(ori_mask_id, sem_scores, clip_text)
    # if isinstance(ori_img, list):
    #   ori_img = [ori_img[i] for i in ori_mask_id]

    all_scores = torch.zeros((num_texts,), device=self.device).float()
    sem_scores = torch.from_numpy(sem_scores).to(self.device)
    for new_id, ori_id in enumerate(ori_mask_id):
      if new_id >= len(mask_proposals):
        # the mask is filtered out.
        continue
      all_scores[ori_id] = sem_scores[ori_id]
    return filtered_texts, all_scores, mask_proposals

  def _get_save_path(self, text):
    folder_name = "_".join([t.replace(" ", "_") for t in text])
    if len(folder_name) > 20:
      folder_name = folder_name[:20]
    output_path = os.path.join(self.save_path, folder_name)
    sub_output_path = [
        os.path.join(output_path, t.replace(" ", "_")) for t in text
    ]
    return output_path, sub_output_path

  def get_mask_proposals(self, img, text):
    if self.seg_mode == "refer":
      if isinstance(img, list):
        cam_map_list = [self.mask_generator(i, t)[0] for i, t in zip(img, text)]
      else:
        cam_map_list = [self.mask_generator(img, t)[0] for t in text]
      return torch.cat(cam_map_list, dim=0)
    elif self.seg_mode == "semantic":
      return self.mask_generator(img, text)[0]
    else:
      raise ValueError(
          "Unknown segmentation mode. Only refer and semantic segmentation are"
          " supported."
      )

  def _forward_car(self, ori_img, text):
    if isinstance(text, str):
      text = [text]
    _, sub_output_path = self._get_save_path(text)
    image_array = np.array(ori_img)
    clip_text = [self.cam_text_template.format(t) for t in text]
    cam_text = text
    init_clip_text = clip_text  # the text prompts of CLIP is different.
    semantic_prompt_text = clip_text
    # Apply semantic prompting augmentation.
    if self.semantic_templates is not None:
      semantic_prompt_text = []
      for template in self.semantic_templates:
        templated_text = [template.format(t) for t in text]
        semantic_prompt_text.append(templated_text)

    num_positive_last = 0
    run = 0
    while True:
      run += 1
      cur_texts, all_scores, mask_proposals = self._forward_stage(
          ori_img, cam_text, clip_text, semantic_prompt_text
      )
      if cur_texts:  # if there is no text, skip the refinement
        cam_text = cur_texts
        clip_text = cur_texts

      num_positive = (all_scores > 0).sum().item()
      if num_positive == num_positive_last:
        # stop the refinement if the number of positive masks
        # does not change.
        break
      num_positive_last = num_positive
    # Apply densecrf for refinement.
    # SAM is optional and is applied outside the model.
    refined_masks = self.post_process(
        ori_img,
        mask_proposals,
        separate=self.seg_mode == "refer",
        bg_factor=self.bg_factor,
    )
    predicted_class_idx = [init_clip_text.index(t) for t in cur_texts]
    if self.visualize:
      _ = [
          viz_attn(
              image_array,
              attn,
              prefix=sub_output_path[aid],
              img_name="semantic_mask",
          )
          for aid, attn in enumerate(refined_masks)
      ]
    final_predicted_masks = torch.zeros(len(text), *refined_masks[0].shape)
    final_all_scores = torch.zeros(len(text))
    for idx, mask, score in zip(predicted_class_idx, refined_masks, all_scores):
      final_predicted_masks[idx] = mask
      final_all_scores[idx] = score
    return final_predicted_masks, final_all_scores

  def forward(self, im_ori, text):
    # raw_image_np is the padded image input with shape (512, 512, 3)
    pseudo_masks, conf_scores = self._forward_car(im_ori, text)
    return pseudo_masks, conf_scores