Spaces:
Runtime error
Runtime error
File size: 9,094 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A wrapper for CLIP model to support forward with a list of text inputs."""
# pylint: disable=g-importing-member
import clip
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
_CONTEXT_LENGTH = 77
def forward_clip_single(model, image, text, h, w):
"""Forward a single text input.
Args:
model (CLIPWrapper or CLIP): the CLIP model.
image (torch.Tensor): the image tensor.
text (List[str]): the text input.
h (int): the height of the image.
w (int): the width of the image.
Returns:
torch.Tensor: the logits.
"""
if isinstance(text, str):
text = [text]
text_tokens = clip.tokenize(text).to(image.device)
text_prediction = model(image, text_tokens, h, w)
return text_prediction.detach().cpu()
def forward_clip(model, image, text, h, w):
"""Forward a list of text inputs.
Args:
model (CLIPWrapper or CLIP): the CLIP model.
image (torch.Tensor): the image tensor.
text (List[str] or List[List[str]]): the text input.
h (int): the height of the image.
w (int): the width of the image.
Returns:
torch.Tensor: the logits.
"""
if isinstance(text[0], list):
text_prediction = torch.stack(
[forward_clip_single(model, image, t, h, w) for t in text], dim=0
)
text_prediction = torch.sum(text_prediction, dim=0)
text_prediction = F.softmax(text_prediction.float(), dim=-1)
else:
text_prediction = forward_clip_single(model, image, text, h, w)
return text_prediction.float()
def upsample_position_embedding(embed, new_size):
"""Upsample the pretrained embedding to a higher resolution.
Args:
embed (torch.Tensor): the pretrained embedding.
new_size (Tuple[int, int]): the new size of the embedding.
Returns:
torch.Tensor: the upsampled embedding.
"""
# emb size NxD
first = embed[:1, :]
embed = embed[1:, :]
n = embed.size(0)
d = embed.size(1)
size = int(np.sqrt(n))
if size * size != n:
raise ValueError(f'The size of embed {n} is not a perfect square number.')
# new_size = size * self.upsample
embed = embed.permute(1, 0)
embed = embed.view(1, d, size, size).contiguous()
embed = F.upsample(
embed,
size=new_size,
mode='bilinear',
)
embed = embed.view(d, -1).contiguous()
embed = embed.permute(1, 0)
embed = torch.cat([first, embed], 0)
embed = nn.parameter.Parameter(embed.half())
return embed
class CustomBlock(nn.Module):
"""A customized attention block."""
def __init__(self, block):
super().__init__()
for k, v in vars(block).items():
setattr(self, k, v)
def attention(self, x):
self.attn_mask = (
self.attn_mask.to(dtype=x.dtype, device=x.device)
if self.attn_mask is not None
else None
)
self.attn = self.attn.to(dtype=x.dtype, device=x.device)
# Setting need_weights to True also returns the attention weights
return self.attn(x, x, x, need_weights=True, attn_mask=self.attn_mask)
def forward(self, x):
# attn_output: (L,N,E), attn_weight: (N,L,L)
attn_output, attn_weight = self.attention(self.ln_1(x))
x = x + attn_output
x = x + self.mlp(self.ln_2(x))
return x, attn_weight
class CustomTransformer(nn.Module):
"""A customized Transformer to support CAM calculation."""
def __init__(self, transformer):
"""Initialize the wrapper.
Args:
transformer (nn.Module): the Transformer to be wrapped.
"""
super().__init__()
for k, v in vars(transformer).items():
setattr(self, k, v)
self.resblocks = nn.Sequential(
*[CustomBlock(block) for block in self.resblocks]
)
def forward(self, x):
attn_weights = []
with torch.no_grad():
layers = self.layers if x.shape[0] == _CONTEXT_LENGTH else self.layers - 1
for i in range(layers):
x, attn_weight = self.resblocks[i](x)
attn_weights.append(attn_weight)
return x, attn_weights
class CustomVisionTransformer(nn.Module):
"""A customized VisionTransformer to support CAM calculation."""
def __init__(self, model):
"""Initialize the wrapper.
Args:
model (VisionTransformer): the VisionTransformer to be wrapped.
"""
super().__init__()
for k, v in vars(model).items():
setattr(self, k, v)
self.patch_size = self.conv1.kernel_size[0]
self.transformer = CustomTransformer(self.transformer)
def forward(self, x, h, w):
self.positional_embedding_new = upsample_position_embedding(
self.positional_embedding, (h // self.patch_size, w // self.patch_size)
)
# shape = [*, width, grid, grid]
x = self.conv1(x)
# shape = [*, width, grid ** 2]
x = x.reshape(x.shape[0], x.shape[1], -1)
# shape = [*, grid ** 2, width]
x = x.permute(0, 2, 1)
zeros = torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
)
# shape = [*, grid ** 2 + 1, width]
x = torch.cat([self.class_embedding.to(x.dtype) + zeros, x], dim=1)
x = x + self.positional_embedding_new.to(x.dtype)
x = self.ln_pre(x)
# NLD -> LND
x = x.permute(1, 0, 2)
x, attn_weight = self.transformer(x)
return x, attn_weight
class CLIPWrapper(nn.Module):
"""A wrapper for CLIP to support forward with a list of text inputs."""
def __init__(self, clip_model):
"""Initialize the wrapper.
Args:
clip_model (CLIP): the CLIP model to be wrapped.
"""
super().__init__()
# copy all attributes from clip_model to self
for k, v in vars(clip_model).items():
setattr(self, k, v)
self.visual = CustomVisionTransformer(self.visual)
self.transformer = CustomTransformer(self.transformer)
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image, h, w):
return self.visual(image.type(self.dtype), h, w)
def encode_text(self, text):
x = self.token_embedding(text).type(
self.dtype
) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x, _ = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding
# (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def pool_visual(self, x, use_cls_token=False):
if use_cls_token:
return x[:, 0]
else:
return torch.mean(x[:, 1:, :], dim=1)
def forward_last_layer(
self, image_features, text_features, use_cls_token=False, repeat_last=True
):
"""Forward the last layer of CLIP.
Args:
image_features (torch.Tensor): the image features.
text_features (torch.Tensor): the text features.
use_cls_token (bool, optional): whether to use the CLS token. Defaults
to False.
repeat_last (bool, optional): whether to repeat the last layer. Defaults
to True.
Returns:
torch.Tensor: the logits.
torch.Tensor: the attention weights.
"""
if repeat_last:
x, attention_weight = self.visual.transformer.resblocks[
self.visual.transformer.layers - 1
](image_features)
else:
x = image_features
attention_weight = None
x = x.permute(1, 0, 2) # LND -> NLD
x = self.visual.ln_post(x)
x = self.pool_visual(x, use_cls_token=use_cls_token)
if self.visual.proj is not None:
x = x @ self.visual.proj
image_features = x
# normalized features
image_features = image_features / image_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
# shape = [global_batch_size, global_batch_size]
logits_per_image = F.softmax(logits_per_image.float(), dim=-1)
return logits_per_image, attention_weight
def forward(self, image, text, h=224, w=224):
with torch.no_grad():
text_features = self.encode_text(text)
feature_map, _ = self.visual(image.type(self.dtype), h, w)
logits_per_image, _ = self.forward_last_layer(
feature_map, text_features, use_cls_token=True, repeat_last=False
)
return logits_per_image
|