Spaces:
Runtime error
Runtime error
File size: 8,113 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calculate CAM with CLIP model."""
import warnings
import clip
import cv2
import numpy as np
import torch
# pylint: disable=g-importing-member
# pylint: disable=g-bad-import-order
from modeling.model.cam import CAM
from modeling.model.cam import scale_cam_image
from modeling.model.utils import img_ms_and_flip
from modeling.model.utils import reshape_transform
from modeling.model.utils import scoremap2bbox
warnings.filterwarnings("ignore")
class ClipOutputTarget:
def __init__(self, category):
self.category = category
def __call__(self, model_output):
if len(model_output.shape) == 1:
return model_output[self.category]
return model_output[:, self.category]
def zeroshot_classifier(classnames, templates, model, device):
"""Zeroshot classifier."""
with torch.no_grad():
zeroshot_weights = []
for classname in classnames:
if templates is None:
texts = [classname]
else:
# format with class
texts = [template.format(classname) for template in templates]
texts = clip.tokenize(texts).to(device) # tokenize
class_embeddings = model.encode_text(texts) # embed with text encoder
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(device)
return zeroshot_weights.t()
class CLIPCAM:
"""Generate CAM with CLIP model."""
def __init__(
self,
clip_model,
device,
text_template=None,
threshold=0.4,
bg_cls=None,
):
self.device = device
self.clip_model = clip_model.to(device)
self.text_template = text_template
self.threshold = threshold
self.stride = self.clip_model.visual.patch_size
# if self.dataset_name == 'voc' else BACKGROUND_CATEGORY_COCO
self.bg_cls = bg_cls
self.bg_text_features = None
if self.bg_cls is not None:
self.bg_text_features = zeroshot_classifier(
self.bg_cls,
("a clean origami {}.",),
self.clip_model,
self.device,
).to(self.device)
self.target_layers = [self.clip_model.visual.transformer.resblocks[-1].ln_1]
self.cam = CAM(
model=self.clip_model,
target_layers=self.target_layers,
reshape_transform=reshape_transform,
use_cuda="cuda" in device,
stride=self.stride,
)
def set_bg_cls(self, bg_cls):
# if len(bg_cls) == 0:
if not bg_cls:
self.bg_cls = None
self.bg_text_features = None
else:
self.bg_cls = bg_cls
self.bg_text_features = zeroshot_classifier(
self.bg_cls,
("a clean origami {}.",),
self.clip_model,
self.device,
).to(self.device)
def __call__(self, ori_img, text, scale=1.0):
"""Get CAM masks and features.
Args:
ori_img(Image): image to be searched.
text (str): text to be searched.
scale (float): image scale.
Returns:
CAM masks and features.
"""
ori_width = ori_img.size[0]
ori_height = ori_img.size[1]
if isinstance(text, str):
text = [text]
# convert image to bgr channel
ms_imgs = img_ms_and_flip(ori_img, ori_height, ori_width, scales=[scale])
image = ms_imgs[0]
image = image.unsqueeze(0)
h, w = image.shape[-2], image.shape[-1]
image = image.to(self.device)
image_features, attn_weight_list = self.clip_model.encode_image(image, h, w)
highres_cam_to_save = []
refined_cam_to_save = []
# keys = []
# [bg_id_for_each_image[im_idx]].to(device_id)
bg_features_temp = None
if self.bg_text_features is not None:
bg_features_temp = self.bg_text_features.to(self.device)
fg_features_temp = zeroshot_classifier(
text, self.text_template, self.clip_model, self.device
).to(self.device)
if bg_features_temp is None:
text_features_temp = fg_features_temp
else:
text_features_temp = torch.cat(
[fg_features_temp, bg_features_temp], dim=0
)
input_tensor = [
image_features,
text_features_temp.to(self.device),
h,
w,
]
# for idx, label in enumerate(label_list):
# keys.append(new_class_names.index(label))
for idx, _ in enumerate(text):
targets = [ClipOutputTarget(idx)]
# torch.cuda.empty_cache()
grayscale_cam, _, attn_weight_last = self.cam(
input_tensor=input_tensor, targets=targets, target_size=None
) # (ori_width, ori_height))
grayscale_cam = grayscale_cam[0, :]
if grayscale_cam.max() == 0:
input_tensor_fg = (
image_features,
fg_features_temp.to(self.device),
h,
w,
)
grayscale_cam, _, attn_weight_last = self.cam(
input_tensor=input_tensor_fg,
targets=targets,
target_size=None,
)
grayscale_cam = grayscale_cam[0, :]
grayscale_cam_highres = cv2.resize(grayscale_cam, (ori_width, ori_height))
highres_cam_to_save.append(torch.tensor(grayscale_cam_highres))
if idx == 0:
attn_weight_list.append(attn_weight_last)
attn_weight = [
aw[:, 1:, 1:] for aw in attn_weight_list
] # (b, hxw, hxw)
attn_weight = torch.stack(attn_weight, dim=0)[-8:]
attn_weight = torch.mean(attn_weight, dim=0)
attn_weight = attn_weight[0].cpu().detach()
attn_weight = attn_weight.float()
box, cnt = scoremap2bbox(
scoremap=grayscale_cam,
threshold=self.threshold,
multi_contour_eval=True,
)
aff_mask = torch.zeros((grayscale_cam.shape[0], grayscale_cam.shape[1]))
for i_ in range(cnt):
x0_, y0_, x1_, y1_ = box[i_]
aff_mask[y0_:y1_, x0_:x1_] = 1
aff_mask = aff_mask.view(
1, grayscale_cam.shape[0] * grayscale_cam.shape[1]
)
aff_mat = attn_weight
trans_mat = aff_mat / torch.sum(aff_mat, dim=0, keepdim=True)
trans_mat = trans_mat / torch.sum(trans_mat, dim=1, keepdim=True)
for _ in range(2):
trans_mat = trans_mat / torch.sum(trans_mat, dim=0, keepdim=True)
trans_mat = trans_mat / torch.sum(trans_mat, dim=1, keepdim=True)
trans_mat = (trans_mat + trans_mat.transpose(1, 0)) / 2
# This is copied from CLIP-ES
for _ in range(1):
trans_mat = torch.matmul(trans_mat, trans_mat)
trans_mat = trans_mat * aff_mask
cam_to_refine = torch.FloatTensor(grayscale_cam)
cam_to_refine = cam_to_refine.view(-1, 1)
# (n,n) * (n,1)->(n,1)
cam_refined = torch.matmul(trans_mat, cam_to_refine).reshape(
h // self.stride, w // self.stride
)
cam_refined = cam_refined.cpu().numpy().astype(np.float32)
cam_refined_highres = scale_cam_image(
[cam_refined], (ori_width, ori_height)
)[0]
refined_cam_to_save.append(torch.tensor(cam_refined_highres))
# post process the cam map
# label = process(raw_image, refined_cam, postprocessor)
# vis_img = vis_mask(np.asarray(raw_image), label, [0, 255, 0])
# vis_img.save(f'clip_es_crf_{idx}.jpg')
# keys = torch.tensor(keys)
# cam_all_scales.append(torch.stack(cam_to_save,dim=0))
cam_masks = torch.stack(refined_cam_to_save, dim=0)
return cam_masks.to(self.device), fg_features_temp.to(self.device)
|