Spaces:
Runtime error
Runtime error
File size: 7,679 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CAM utils."""
# pylint: disable=g-importing-member
import os
import cv2
import numpy as np
from PIL import Image
from scipy.ndimage import binary_fill_holes
import torch
from torchvision.transforms import Compose
from torchvision.transforms import Normalize
from torchvision.transforms import Resize
from torchvision.transforms import ToTensor
# pylint: disable=g-import-not-at-top
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
_CONTOUR_INDEX = 1 if cv2.__version__.split('.')[0] == '3' else 0
def _convert_image_to_rgb(image):
return image.convert('RGB')
def _transform_resize(h, w):
return Compose([
Resize((h, w), interpolation=BICUBIC),
_convert_image_to_rgb,
ToTensor(),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
])
def img_ms_and_flip(image, ori_height, ori_width, scales=1.0, patch_size=16):
"""Resizes and flips the image."""
if isinstance(scales, float):
scales = [scales]
all_imgs = []
for scale in scales:
preprocess = _transform_resize(
int(np.ceil(scale * int(ori_height) / patch_size) * patch_size),
int(np.ceil(scale * int(ori_width) / patch_size) * patch_size),
)
image = preprocess(image)
image_ori = image
image_flip = torch.flip(image, [-1])
all_imgs.append(image_ori)
all_imgs.append(image_flip)
return all_imgs
def reshape_transform(tensor, height=28, width=28):
tensor = tensor.permute(1, 0, 2)
result = tensor[:, 1:, :].reshape(
tensor.size(0), height, width, tensor.size(2)
)
# Bring the channels to the first dimension, like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
def vis_mask(image, mask, mask_color):
# switch the height and width of image
# image = image.transpose(1, 0, 2)
if mask.shape[0] != image.shape[0] or mask.shape[1] != image.shape[1]:
mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
fg = mask > 0.5
rgb = np.copy(image)
rgb[fg] = (rgb[fg] * 0.3 + np.array(mask_color) * 0.7).astype(np.uint8)
return Image.fromarray(rgb)
def scoremap2bbox(scoremap, threshold, multi_contour_eval=False):
"""Get bounding boxes from scoremap."""
height, width = scoremap.shape
scoremap_image = np.expand_dims((scoremap * 255).astype(np.uint8), 2)
while True:
_, thr_gray_heatmap = cv2.threshold(
src=scoremap_image,
thresh=int(threshold * np.max(scoremap_image)),
maxval=255,
type=cv2.THRESH_BINARY,
)
if thr_gray_heatmap.max() > 0 or threshold <= 0:
break
threshold -= 0.1
contours = cv2.findContours(
image=thr_gray_heatmap, mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_SIMPLE
)[_CONTOUR_INDEX]
# if len(contours) == 0:
if not contours:
return np.asarray([[0, 0, 0, 0]]), 1
if not multi_contour_eval:
contours = [max(contours, key=cv2.contourArea)]
estimated_boxes = []
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
x0, y0, x1, y1 = x, y, x + w, y + h
x1 = min(x1, width - 1)
y1 = min(y1, height - 1)
estimated_boxes.append([x0, y0, x1, y1])
return np.asarray(estimated_boxes), len(contours)
def mask2chw(arr):
# Find the row and column indices where the array is 1
rows, cols = np.where(arr == 1)
# Calculate center of the mask
center_y = int(np.mean(rows))
center_x = int(np.mean(cols))
# Calculate height and width of the mask
height = rows.max() - rows.min() + 1
width = cols.max() - cols.min() + 1
return (center_y, center_x), height, width
def unpad(image_array, pad=None):
if pad is not None:
left, top, width, height = pad
image_array = image_array[top : top + height, left : left + width, :]
return image_array
def apply_visual_prompts(
image_array,
mask,
visual_prompt_type=('circle',),
visualize=False,
color=(255, 0, 0),
thickness=1,
blur_strength=(15, 15),
):
"""Applies visual prompts to the image."""
prompted_image = image_array.copy()
if 'blur' in visual_prompt_type:
# blur the part out side the mask
# Blur the entire image
blurred = cv2.GaussianBlur(prompted_image.copy(), blur_strength, 0)
# Get the sharp region using the mask
sharp_region = cv2.bitwise_and(
prompted_image.copy(),
prompted_image.copy(),
mask=np.clip(mask, 0, 255).astype(np.uint8),
)
# Get the blurred region using the inverted mask
inv_mask = 1 - mask
blurred_region = (blurred * inv_mask[:, :, None]).astype(np.uint8)
# Combine the sharp and blurred regions
prompted_image = cv2.add(sharp_region, blurred_region)
if 'gray' in visual_prompt_type:
gray = cv2.cvtColor(prompted_image.copy(), cv2.COLOR_BGR2GRAY)
# make gray part 3 channel
gray = np.stack([gray, gray, gray], axis=-1)
# Get the sharp region using the mask
color_region = cv2.bitwise_and(
prompted_image.copy(),
prompted_image.copy(),
mask=np.clip(mask, 0, 255).astype(np.uint8),
)
# Get the blurred region using the inverted mask
inv_mask = 1 - mask
gray_region = (gray * inv_mask[:, :, None]).astype(np.uint8)
# Combine the sharp and blurred regions
prompted_image = cv2.add(color_region, gray_region)
if 'black' in visual_prompt_type:
prompted_image = cv2.bitwise_and(
prompted_image.copy(),
prompted_image.copy(),
mask=np.clip(mask, 0, 255).astype(np.uint8),
)
if 'circle' in visual_prompt_type:
mask_center, mask_height, mask_width = mask2chw(mask)
center_coordinates = (mask_center[1], mask_center[0])
axes_length = (mask_width // 2, mask_height // 2)
prompted_image = cv2.ellipse(
prompted_image,
center_coordinates,
axes_length,
0,
0,
360,
color,
thickness,
)
if 'rectangle' in visual_prompt_type:
mask_center, mask_height, mask_width = mask2chw(mask)
# center_coordinates = (mask_center[1], mask_center[0])
# axes_length = (mask_width // 2, mask_height // 2)
start_point = (
mask_center[1] - mask_width // 2,
mask_center[0] - mask_height // 2,
)
end_point = (
mask_center[1] + mask_width // 2,
mask_center[0] + mask_height // 2,
)
prompted_image = cv2.rectangle(
prompted_image, start_point, end_point, color, thickness
)
if 'contour' in visual_prompt_type:
# Find the contours of the mask
# fill holes for the mask
mask = binary_fill_holes(mask)
contours, _ = cv2.findContours(
mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# Draw the contours on the image
prompted_image = cv2.drawContours(
prompted_image.copy(), contours, -1, color, thickness
)
if visualize:
cv2.imwrite(os.path.join('masked_img.png'), prompted_image)
prompted_image = Image.fromarray(prompted_image.astype(np.uint8))
return prompted_image
|