File size: 7,679 Bytes
6cd90b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""CAM utils."""

# pylint: disable=g-importing-member
import os

import cv2
import numpy as np
from PIL import Image
from scipy.ndimage import binary_fill_holes
import torch
from torchvision.transforms import Compose
from torchvision.transforms import Normalize
from torchvision.transforms import Resize
from torchvision.transforms import ToTensor

# pylint: disable=g-import-not-at-top
try:
  from torchvision.transforms import InterpolationMode

  BICUBIC = InterpolationMode.BICUBIC
except ImportError:
  BICUBIC = Image.BICUBIC

_CONTOUR_INDEX = 1 if cv2.__version__.split('.')[0] == '3' else 0


def _convert_image_to_rgb(image):
  return image.convert('RGB')


def _transform_resize(h, w):
  return Compose([
      Resize((h, w), interpolation=BICUBIC),
      _convert_image_to_rgb,
      ToTensor(),
      Normalize(
          (0.48145466, 0.4578275, 0.40821073),
          (0.26862954, 0.26130258, 0.27577711),
      ),
  ])


def img_ms_and_flip(image, ori_height, ori_width, scales=1.0, patch_size=16):
  """Resizes and flips the image."""
  if isinstance(scales, float):
    scales = [scales]

  all_imgs = []
  for scale in scales:
    preprocess = _transform_resize(
        int(np.ceil(scale * int(ori_height) / patch_size) * patch_size),
        int(np.ceil(scale * int(ori_width) / patch_size) * patch_size),
    )
    image = preprocess(image)
    image_ori = image
    image_flip = torch.flip(image, [-1])
    all_imgs.append(image_ori)
    all_imgs.append(image_flip)
  return all_imgs


def reshape_transform(tensor, height=28, width=28):
  tensor = tensor.permute(1, 0, 2)
  result = tensor[:, 1:, :].reshape(
      tensor.size(0), height, width, tensor.size(2)
  )

  # Bring the channels to the first dimension, like in CNNs.
  result = result.transpose(2, 3).transpose(1, 2)
  return result


def vis_mask(image, mask, mask_color):
  # switch the height and width of image
  # image = image.transpose(1, 0, 2)
  if mask.shape[0] != image.shape[0] or mask.shape[1] != image.shape[1]:
    mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
  fg = mask > 0.5
  rgb = np.copy(image)
  rgb[fg] = (rgb[fg] * 0.3 + np.array(mask_color) * 0.7).astype(np.uint8)
  return Image.fromarray(rgb)


def scoremap2bbox(scoremap, threshold, multi_contour_eval=False):
  """Get bounding boxes from scoremap."""
  height, width = scoremap.shape
  scoremap_image = np.expand_dims((scoremap * 255).astype(np.uint8), 2)
  while True:
    _, thr_gray_heatmap = cv2.threshold(
        src=scoremap_image,
        thresh=int(threshold * np.max(scoremap_image)),
        maxval=255,
        type=cv2.THRESH_BINARY,
    )
    if thr_gray_heatmap.max() > 0 or threshold <= 0:
      break
    threshold -= 0.1
  contours = cv2.findContours(
      image=thr_gray_heatmap, mode=cv2.RETR_TREE, method=cv2.CHAIN_APPROX_SIMPLE
  )[_CONTOUR_INDEX]

  # if len(contours) == 0:
  if not contours:
    return np.asarray([[0, 0, 0, 0]]), 1

  if not multi_contour_eval:
    contours = [max(contours, key=cv2.contourArea)]

  estimated_boxes = []
  for contour in contours:
    x, y, w, h = cv2.boundingRect(contour)
    x0, y0, x1, y1 = x, y, x + w, y + h
    x1 = min(x1, width - 1)
    y1 = min(y1, height - 1)
    estimated_boxes.append([x0, y0, x1, y1])

  return np.asarray(estimated_boxes), len(contours)


def mask2chw(arr):
  # Find the row and column indices where the array is 1
  rows, cols = np.where(arr == 1)
  # Calculate center of the mask
  center_y = int(np.mean(rows))
  center_x = int(np.mean(cols))
  # Calculate height and width of the mask
  height = rows.max() - rows.min() + 1
  width = cols.max() - cols.min() + 1
  return (center_y, center_x), height, width


def unpad(image_array, pad=None):
  if pad is not None:
    left, top, width, height = pad
    image_array = image_array[top : top + height, left : left + width, :]
  return image_array


def apply_visual_prompts(
    image_array,
    mask,
    visual_prompt_type=('circle',),
    visualize=False,
    color=(255, 0, 0),
    thickness=1,
    blur_strength=(15, 15),
):
  """Applies visual prompts to the image."""
  prompted_image = image_array.copy()
  if 'blur' in visual_prompt_type:
    # blur the part out side the mask
    # Blur the entire image
    blurred = cv2.GaussianBlur(prompted_image.copy(), blur_strength, 0)
    # Get the sharp region using the mask
    sharp_region = cv2.bitwise_and(
        prompted_image.copy(),
        prompted_image.copy(),
        mask=np.clip(mask, 0, 255).astype(np.uint8),
    )
    # Get the blurred region using the inverted mask
    inv_mask = 1 - mask
    blurred_region = (blurred * inv_mask[:, :, None]).astype(np.uint8)
    # Combine the sharp and blurred regions
    prompted_image = cv2.add(sharp_region, blurred_region)
  if 'gray' in visual_prompt_type:
    gray = cv2.cvtColor(prompted_image.copy(), cv2.COLOR_BGR2GRAY)
    # make gray part 3 channel
    gray = np.stack([gray, gray, gray], axis=-1)
    # Get the sharp region using the mask
    color_region = cv2.bitwise_and(
        prompted_image.copy(),
        prompted_image.copy(),
        mask=np.clip(mask, 0, 255).astype(np.uint8),
    )
    # Get the blurred region using the inverted mask
    inv_mask = 1 - mask
    gray_region = (gray * inv_mask[:, :, None]).astype(np.uint8)
    # Combine the sharp and blurred regions
    prompted_image = cv2.add(color_region, gray_region)
  if 'black' in visual_prompt_type:
    prompted_image = cv2.bitwise_and(
        prompted_image.copy(),
        prompted_image.copy(),
        mask=np.clip(mask, 0, 255).astype(np.uint8),
    )
  if 'circle' in visual_prompt_type:
    mask_center, mask_height, mask_width = mask2chw(mask)
    center_coordinates = (mask_center[1], mask_center[0])
    axes_length = (mask_width // 2, mask_height // 2)
    prompted_image = cv2.ellipse(
        prompted_image,
        center_coordinates,
        axes_length,
        0,
        0,
        360,
        color,
        thickness,
    )
  if 'rectangle' in visual_prompt_type:
    mask_center, mask_height, mask_width = mask2chw(mask)
    # center_coordinates = (mask_center[1], mask_center[0])
    # axes_length = (mask_width // 2, mask_height // 2)
    start_point = (
        mask_center[1] - mask_width // 2,
        mask_center[0] - mask_height // 2,
    )
    end_point = (
        mask_center[1] + mask_width // 2,
        mask_center[0] + mask_height // 2,
    )
    prompted_image = cv2.rectangle(
        prompted_image, start_point, end_point, color, thickness
    )
  if 'contour' in visual_prompt_type:
    # Find the contours of the mask
    # fill holes for the mask
    mask = binary_fill_holes(mask)
    contours, _ = cv2.findContours(
        mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
    )
    # Draw the contours on the image
    prompted_image = cv2.drawContours(
        prompted_image.copy(), contours, -1, color, thickness
    )

  if visualize:
    cv2.imwrite(os.path.join('masked_img.png'), prompted_image)
  prompted_image = Image.fromarray(prompted_image.astype(np.uint8))
  return prompted_image