Spaces:
Runtime error
Runtime error
File size: 3,549 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file contains the unit tests for the utils.py file."""
import numpy as np
from PIL import Image
import torch
# pylint: disable=g-bad-import-order
from modeling.model import utils
def test_scoremap2bbox():
"""Test the scoremap2bbox function."""
scoremap = np.zeros((10, 10))
scoremap[1:5, 1:5] = 1
scoremap[5:9, 5:9] = 2
scoremap[5:9, 1:5] = 3
scoremap[1:5, 5:9] = 4
bbox, len_bboxes = utils.scoremap2bbox(scoremap, 0.5)
assert len_bboxes == 1
assert bbox[0, 0] == 1
assert bbox[0, 1] == 1
assert bbox[0, 2] == 9
assert bbox[0, 3] == 9
def test_mask2chw():
"""Test the mask2chw function."""
mask = np.zeros((10, 10))
mask[1:5, 1:5] = 1
mask[5:9, 5:9] = 2
mask[5:9, 1:5] = 3
mask[1:5, 5:9] = 4
mask = torch.tensor(mask)
mask_center, mask_height, mask_width = utils.mask2chw(mask)
assert len(mask_center) == 2
assert mask_center[0] == 2
assert mask_center[1] == 2
assert mask_height == 4
assert mask_width == 4
def test_unpad():
"""Test the unpad function."""
image = np.zeros((10, 10, 1))
image[1:5, 1:5] = 1
image[5:9, 5:9] = 2
image[5:9, 1:5] = 3
image[1:5, 5:9] = 4
unpad_image = utils.unpad(image, pad=(1, 1, 8, 8))
assert len(unpad_image[0]) == 8, 'The width of the image is not 8.'
assert len(unpad_image[1]) == 8, 'The height of the image is not 8.'
unpad_image = utils.unpad(image, None)
assert (unpad_image == image).sum() == 100
def test_apply_visual_prompts():
"""Test the apply_visual_prompts function."""
image = np.ones((5, 5))
mask = np.array([
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1.0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
])
target = np.array([
[1, 1, 255, 1, 1],
[1, 255, 1, 255, 1],
[255, 1, 1, 1, 255],
[1, 255, 1, 255, 1],
[1, 1, 255, 1, 1],
])
mask[1:5, 1:5] = 1
prompted_image = utils.apply_visual_prompts(
image, mask, visual_prompt_type='circle', thickness=1
)
prompted_array = np.array(prompted_image)
assert (prompted_array == target).sum() == 25
def test_reshape_transform():
"""Test the reshape_transform function."""
image = torch.zeros((101, 10, 32))
image = utils.reshape_transform(image, height=10, width=10)
b, c, h, w = image.shape
assert b == 10
assert c == 32
assert h == 10
assert w == 10
def test_img_ms_and_flip():
"""Test the img_ms_and_flip function."""
image = np.zeros((120, 150))
image[1:5, 1:5] = 1
image[5:9, 5:9] = 2
image[5:9, 1:5] = 3
image[1:5, 5:9] = 4
image = Image.fromarray(image)
image = utils.img_ms_and_flip(image, 120, 150, scales=[1.2], patch_size=16)
image = image[0]
h, w = image.shape[-2:]
assert h == int(np.ceil(1.2 * 120 / 16) * 16)
assert w == int(np.ceil(1.2 * 150 / 16) * 16)
if __name__ == '__main__':
test_scoremap2bbox()
test_mask2chw()
test_unpad()
test_apply_visual_prompts()
test_reshape_transform()
test_img_ms_and_flip()
|