Spaces:
Runtime error
Runtime error
File size: 10,434 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Find objects."""
# pylint: disable=g-importing-member
import numpy as np
import scipy
from scipy import ndimage
from scipy.linalg import eigh
from scipy.ndimage import label
import torch
import torch.nn.functional as F
def ncut(
feats,
dims,
scales,
init_image_size,
tau=0,
eps=1e-5,
no_binary_graph=False,
):
"""Implementation of NCut Method.
Args:
feats: the pixel/patche features of an image
dims: dimension of the map from which the features are used
scales: from image to map scale
init_image_size: size of the image
tau: thresold for graph construction
eps: graph edge weight
no_binary_graph: ablation study for using similarity score as graph
edge weight
Returns:
TODO
"""
feats = feats[0, 1:, :]
feats = F.normalize(feats, p=2)
a = feats @ feats.transpose(1, 0)
a = a.cpu().numpy()
if no_binary_graph:
a[a < tau] = eps
else:
a = a > tau
a = np.where(a.astype(float) == 0, eps, a)
d_i = np.sum(a, axis=1)
d = np.diag(d_i)
# Print second and third smallest eigenvector
_, eigenvectors = eigh(d - a, d, subset_by_index=[1, 2])
eigenvec = np.copy(eigenvectors[:, 0])
# Using average point to compute bipartition
second_smallest_vec = eigenvectors[:, 0]
avg = np.sum(second_smallest_vec) / len(second_smallest_vec)
bipartition = second_smallest_vec > avg
seed = np.argmax(np.abs(second_smallest_vec))
if bipartition[seed] != 1:
eigenvec = eigenvec * -1
bipartition = np.logical_not(bipartition)
bipartition = bipartition.reshape(dims).astype(float)
# predict BBox
# We only extract the principal object BBox
pred, _, objects, cc = detect_box(
bipartition,
seed,
dims,
scales=scales,
initial_im_size=init_image_size[1:],
)
mask = np.zeros(dims)
mask[cc[0], cc[1]] = 1
return np.asarray(pred), objects, mask, seed, None, eigenvec.reshape(dims)
def grad_obj_discover_on_attn(attn, gradcam, dims, topk=1, threshold=0.6):
"""Get the gradcam and attn map, then find the seed, then use LOST algorithm to find the potential points.
Args:
attn: attention map from ViT averaged across all heads, shape: [1,
(1+num_patches), (1+num_patches)].
gradcam: gradcam map from ViT, shape: [1, 1, H, W].
dims:
topk:
threshold:
Returns:
th_attn:
"""
w_featmap, h_featmap = dims
# nh = attn.shape[1]
attn = attn.squeeze()
seeds = torch.argsort(gradcam.flatten(), descending=True)[:topk]
# We keep only the output patch attention
# Get the attentions corresponding to [CLS] token
patch_attn = attn[1:, 1:]
topk_attn = patch_attn[seeds]
nh = topk_attn.shape[0]
# attentions = attn[0, :, 0, 1:].reshape(nh, -1)
# we keep only a certain percentage of the mass
val, idx = torch.sort(topk_attn)
val /= torch.sum(val, dim=1, keepdim=True)
cumval = torch.cumsum(val, dim=1)
th_attn = cumval > (1 - threshold)
idx2 = torch.argsort(idx)
for h in range(nh):
th_attn[h] = th_attn[h][idx2[h]]
th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
th_attn = th_attn.sum(0)
th_attn[th_attn > 1] = 1
return th_attn[None, None]
def grad_obj_discover(feats, gradcam, dims):
"""Using gradient heatmap to find the seed, then use LOST algorithm to find the potential points.
Args:
feats: the pixel/patche features of an image. Shape: [1, HW, C]
gradcam: the grad cam map
dims: dimension of the map from which the features are used
Returns:
pred: box predictions
A: binary affinity matrix
scores: lowest degree scores for all patches
seed: selected patch corresponding to an object
"""
# Compute the similarity
a = (feats @ feats.transpose(1, 2)).squeeze()
# Compute the inverse degree centrality measure per patch
# sorted_patches, scores = patch_scoring(a)
# Select the initial seed
# seed = sorted_patches[0]
seed = gradcam.argmax()
mask = a[seed]
mask = mask.view(1, 1, *dims)
return mask
def lost(feats, dims, scales, init_image_size, k_patches=100):
"""Implementation of LOST method.
Args:
feats: the pixel/patche features of an image. Shape: [1, C, H, W]
dims: dimension of the map from which the features are used
scales: from image to map scale
init_image_size: size of the image
k_patches: number of k patches retrieved that are compared to the seed
at seed expansion.
Returns:
pred: box predictions
A: binary affinity matrix
scores: lowest degree scores for all patches
seed: selected patch corresponding to an object
"""
# Compute the similarity
feats = feats.flatten(2).transpose(1, 2)
a = (feats @ feats.transpose(1, 2)).squeeze()
# Compute the inverse degree centrality measure per patch
sorted_patches, _ = patch_scoring(a)
# Select the initial seed
seed = sorted_patches[0]
# Seed expansion
potentials = sorted_patches[:k_patches]
similars = potentials[a[seed, potentials] > 0.0]
m = torch.sum(a[similars, :], dim=0)
# Box extraction
_, _, _, mask = detect_box(
m, seed, dims, scales=scales, initial_im_size=init_image_size[1:]
)
return mask
# return np.asarray(bbox), A, scores, seed
def patch_scoring(m, threshold=0.0):
"""Patch scoring based on the inverse degree."""
# Cloning important
a = m.clone()
# Zero diagonal
a.fill_diagonal_(0)
# Make sure symmetric and non nul
a[a < 0] = 0
# C = A + A.t()
# Sort pixels by inverse degree
cent = -torch.sum(a > threshold, dim=1).type(torch.float32)
sel = torch.argsort(cent, descending=True)
return sel, cent
def detect_box(
bipartition,
seed,
dims,
initial_im_size=None,
scales=None,
principle_object=True,
):
"""Extract a box corresponding to the seed patch."""
# Among connected components extract from the affinity matrix, select the one
# corresponding to the seed patch.
# w_featmap, h_featmap = dims
objects, _ = ndimage.label(bipartition)
cc = objects[np.unravel_index(seed, dims)]
if principle_object:
mask = np.where(objects == cc)
# Add +1 because excluded max
ymin, ymax = min(mask[0]), max(mask[0]) + 1
xmin, xmax = min(mask[1]), max(mask[1]) + 1
# Rescale to image size
r_xmin, r_xmax = scales[1] * xmin, scales[1] * xmax
r_ymin, r_ymax = scales[0] * ymin, scales[0] * ymax
pred = [r_xmin, r_ymin, r_xmax, r_ymax]
# Check not out of image size (used when padding)
if initial_im_size:
pred[2] = min(pred[2], initial_im_size[1])
pred[3] = min(pred[3], initial_im_size[0])
# Coordinate predictions for the feature space
# Axis different then in image space
pred_feats = [ymin, xmin, ymax, xmax]
return pred, pred_feats, objects, mask
else:
raise NotImplementedError
# This function is modified from
# https://github.com/facebookresearch/dino/blob/main/visualize_attention.py
# Ref: https://github.com/facebookresearch/dino.
def dino_seg(attn, dims, patch_size, head=0):
"""Extraction of boxes based on the DINO segmentation method proposed in DINO."""
w_featmap, h_featmap = dims
nh = attn.shape[1]
official_th = 0.6
# We keep only the output patch attention
# Get the attentions corresponding to [CLS] token
attentions = attn[0, :, 0, 1:].reshape(nh, -1)
# we keep only a certain percentage of the mass
val, idx = torch.sort(attentions)
val /= torch.sum(val, dim=1, keepdim=True)
cumval = torch.cumsum(val, dim=1)
th_attn = cumval > (1 - official_th)
idx2 = torch.argsort(idx)
for h in range(nh):
th_attn[h] = th_attn[h][idx2[h]]
th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
# Connected components
labeled_array, _ = scipy.ndimage.label(th_attn[head].cpu().numpy())
# Find the biggest component
size_components = [
np.sum(labeled_array == c) for c in range(np.max(labeled_array))
]
if len(size_components) > 1:
# Select the biggest component avoiding component 0 corresponding
# to background
biggest_component = np.argmax(size_components[1:]) + 1
else:
# Cases of a single component
biggest_component = 0
# Mask corresponding to connected component
mask = np.where(labeled_array == biggest_component)
# Add +1 because excluded max
ymin, ymax = min(mask[0]), max(mask[0]) + 1
xmin, xmax = min(mask[1]), max(mask[1]) + 1
# Rescale to image
r_xmin, r_xmax = xmin * patch_size, xmax * patch_size
r_ymin, r_ymax = ymin * patch_size, ymax * patch_size
pred = [r_xmin, r_ymin, r_xmax, r_ymax]
return pred
def get_feats(feat_out, shape):
# Batch size, Number of heads, Number of tokens
nb_im, nh, nb_tokens = shape[0:3]
qkv = (
feat_out["qkv"]
.reshape(nb_im, nb_tokens, 3, nh, -1 // nh)
.permute(2, 0, 3, 1, 4)
)
k = qkv[1]
k = k.transpose(1, 2).reshape(nb_im, nb_tokens, -1)
return k
def get_instances(masks, return_largest=False):
return [
get_instances_single(m[None], return_largest=return_largest)
for m in masks
]
def get_instances_single(mask, return_largest=False):
"""Get the mask of a single instance."""
labeled_array, _ = label(mask.cpu().numpy())
instances = np.concatenate(
[labeled_array == c for c in range(np.max(labeled_array) + 1)], axis=0
)
if return_largest:
size_components = np.sum(instances, axis=(1, 2))
if len(size_components) > 1:
# Select the biggest component avoiding component 0 corresponding
# to background
biggest_component = np.argmax(size_components[1:]) + 1
else:
# Cases of a single component
biggest_component = 0
# Mask corresponding to connected component
return torch.from_numpy(labeled_array == biggest_component).float()
return torch.from_numpy(instances[1:]).float()
|