Spaces:
Runtime error
Runtime error
File size: 5,670 Bytes
6cd90b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Post processing."""
import torch
import torch.nn.functional as F
# pylint: disable=g-bad-import-order
# pylint: disable=g-importing-member
from modeling.post_process.object_discovery import get_instances
from utils.metrics import IoM
# This should be a abstract function to generate masks for the input image.
# However, we first hack it due to the time limit.
def generate_masks_from_sam(
image_path, save_path, pipeline, img_sam=None, visualize=True
):
"""Generate masks from SAM."""
masks, _, mask_list = pipeline.segment_automask(
image_path=image_path,
visualize=visualize,
save_path=save_path,
image=img_sam,
)
mask_tensor = torch.from_numpy(masks)
mask_tensor = mask_tensor.float()
return mask_tensor, mask_list
def match_masks(
mask_tensor, attn_map, mask_list, iom_thres=0.0, min_pred_threshold=0.2
):
"""Match masks with the attention map according to the IoU.
Args:
mask_tensor: A torch.Tensor for the masks with shape [num_masks, height,
width].
attn_map: A torch.Tensor for the attention map with shape [1, 1, height,
width].
mask_list: A list of masks with shape [num_masks, height, width]
iom_thres: A float for the threshold to apply to the attention map.
min_pred_threshold: The prediction score threshold.
Returns:
A list of matched_masks with shape [num_masks, height, width],
len(matched_masks) = number of captions
"""
predictions = attn_map.squeeze(1).detach()
iom = IoM(predictions, mask_tensor, min_pred_threshold=min_pred_threshold)
keep_mask = iom > iom_thres
# mask_tensor = mask_tensor[keep_mask]
new_list = []
for mid, m_dict in enumerate(mask_list):
if keep_mask[mid]:
new_list.append(m_dict)
# if not len(new_list):
if not new_list:
max_id = torch.argmax(iom)
new_list.append(mask_list[max_id])
return new_list
def post_process_mask(attn_masks, pad=None, min_area_ratio=0.15):
"""Post process attention masks."""
if pad is not None:
left, top, width, height = pad
attn_masks = attn_masks[Ellipsis, top : top + height, left : left + width]
else:
height = None
width = None
mask_area = attn_masks.sum(dim=(1, 2))
total_area = mask_area.sum()
keep_mask = mask_area / total_area > min_area_ratio
if torch.sum(keep_mask) == 0:
if keep_mask.shape[0] == 0:
return torch.zeros(
(1, height, width), device=attn_masks.device, dtype=attn_masks.dtype
)
keep_mask[torch.argmax(mask_area)] = True
attn_masks = attn_masks[keep_mask]
return attn_masks
def filter_masks(
attn_masks,
pad=None,
mask_threshold=0.3,
min_area_ratio=0.15,
return_largest=False,
device=None,
return_instances=False,
):
"""Filter attention mask below the threshold."""
attn_masks[attn_masks < mask_threshold] = 0
# get_instances will be operated on cpu
ins_masks = get_instances(attn_masks, return_largest=return_largest)
ins_masks = [post_process_mask(m, pad, min_area_ratio) for m in ins_masks]
ins_masks = list(filter(lambda x: x is not None, ins_masks))
ins_masks = [m.to(device) for m in ins_masks]
if not return_instances:
return [torch.any(m, dim=0, keepdim=True).to(m.dtype) for m in ins_masks]
return ins_masks
def post_process(
input_array,
attn_masks,
pad=None,
mask_threshold=0.3,
return_largest=False,
min_area_ratio=0.15,
return_instances=False,
):
"""post process the input tensor with the attention masks.
Args:
input_array: A np.ndarray input array to be post processed with shape
[width, height, 3, batch_size]
attn_masks: A torch.Tensor for the attention masks with shape [1,
num_texts, width, height]
pad: A list of padding: [pad_left, pad_top, width, height], where
pad_left, pad_top and width, height are int values.
mask_threshold: The threshold to binarize the mask.
return_largest: If true, return the largest connected component.
min_area_ratio: Keep the mask if its area is larger than this threshold.
return_instances: Whether to return instances or not.
Returns:
attn_masks: A list of tensors with shape [num_instances, height, width]
x num_texts, where len(attn_masks) = num_texts.
NOTE: the number_instances for each text (class) may vary.
The output is a binary tensor.
"""
if len(attn_masks.shape) == 3:
attn_masks = attn_masks[None]
img_width, img_height = input_array.shape[:2]
attn_masks = F.interpolate(
attn_masks, size=(img_height, img_width), mode='bicubic'
).squeeze(0)
device = attn_masks.device
output_masks = filter_masks(
attn_masks,
pad=pad,
mask_threshold=mask_threshold,
min_area_ratio=min_area_ratio,
return_largest=return_largest,
device=device,
return_instances=return_instances,
)
if pad is not None:
left, top, width, height = pad
input_array = input_array[top : top + height, left : left + width]
return input_array, output_masks
|