Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 The Google Research Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""DenseCRF.""" | |
import numpy as np | |
from pydensecrf import densecrf as dcrf | |
from pydensecrf import utils | |
import torch | |
import torch.nn.functional as F | |
class DenseCRF(object): | |
"""DenseCRF class.""" | |
def __init__(self, iter_max, pos_w, pos_xy_std, bi_w, bi_xy_std, bi_rgb_std): | |
self.iter_max = iter_max | |
self.pos_w = pos_w | |
self.pos_xy_std = pos_xy_std | |
self.bi_w = bi_w | |
self.bi_xy_std = bi_xy_std | |
self.bi_rgb_std = bi_rgb_std | |
def __call__(self, image, probmap): | |
c, h, w = probmap.shape | |
u = utils.unary_from_softmax(probmap) | |
u = np.ascontiguousarray(u) | |
image = np.ascontiguousarray(image) | |
d = dcrf.DenseCRF2D(w, h, c) | |
d.setUnaryEnergy(u) | |
d.addPairwiseGaussian(sxy=self.pos_xy_std, compat=self.pos_w) | |
d.addPairwiseBilateral( | |
sxy=self.bi_xy_std, | |
srgb=self.bi_rgb_std, | |
rgbim=image, | |
compat=self.bi_w, | |
) | |
q = d.inference(self.iter_max) | |
q = np.array(q).reshape((c, h, w)) | |
return q | |
class PostProcess: | |
"""Post processing with dense CRF.""" | |
def __init__(self, device): | |
self.device = device | |
self.postprocessor = DenseCRF( | |
iter_max=10, | |
pos_xy_std=1, | |
pos_w=3, | |
bi_xy_std=67, | |
bi_rgb_std=3, | |
bi_w=4, | |
) | |
def apply_crf(self, image, cams, bg_factor=1.0): | |
"""Apply dense CRF.""" | |
bg_score = np.power(1 - np.max(cams, axis=0, keepdims=True), bg_factor) | |
cams = np.concatenate((bg_score, cams), axis=0) | |
prob = cams | |
image = image.astype(np.uint8).transpose(1, 2, 0) | |
prob = self.postprocessor(image, prob) | |
label = np.argmax(prob, axis=0) | |
label_tensor = torch.from_numpy(label).long() | |
refined_mask = F.one_hot(label_tensor).to(device=self.device) | |
refined_mask = refined_mask.permute(2, 0, 1) | |
refined_mask = refined_mask[1:].float() | |
return refined_mask | |
def __call__(self, image, cams, separate=False, bg_factor=1.0): | |
mean_bgr = (104.008, 116.669, 122.675) | |
# covert Image to numpy array | |
image = np.array(image).astype(np.float32) | |
# RGB -> BGR | |
image = image[:, :, ::-1] | |
# Mean subtraction | |
image -= mean_bgr | |
# HWC -> CHW | |
image = image.transpose(2, 0, 1) | |
if isinstance(cams, torch.Tensor): | |
cams = cams.cpu().detach().numpy() | |
if separate: | |
refined_mask = [ | |
self.apply_crf(image, cam[None], bg_factor) for cam in cams | |
] | |
refined_mask = torch.cat(refined_mask, dim=0) | |
else: | |
refined_mask = self.apply_crf(image, cams, bg_factor) | |
return refined_mask | |