Spaces:
Running
Running
import os | |
import torch | |
import librosa | |
import gradio as gr | |
from scipy.io.wavfile import write | |
from transformers import WavLMModel | |
import utils | |
from models import SynthesizerTrn | |
from mel_processing import mel_spectrogram_torch | |
from speaker_encoder.voice_encoder import SpeakerEncoder | |
''' | |
def get_wavlm(): | |
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU') | |
shutil.move('WavLM-Large.pt', 'wavlm') | |
''' | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("Loading FreeVC...") | |
hps = utils.get_hparams_from_file("configs/freevc.json") | |
freevc = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None) | |
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt') | |
print("Loading FreeVC-s...") | |
hps = utils.get_hparams_from_file("configs/freevc-s.json") | |
freevc_s = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model).to(device) | |
_ = freevc_s.eval() | |
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None) | |
print("Loading WavLM for content...") | |
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device) | |
def convert(model, src, tgt): | |
with torch.no_grad(): | |
# tgt | |
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate) | |
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) | |
if model == "FreeVC": | |
g_tgt = smodel.embed_utterance(wav_tgt) | |
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device) | |
else: | |
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device) | |
mel_tgt = mel_spectrogram_torch( | |
wav_tgt, | |
hps.data.filter_length, | |
hps.data.n_mel_channels, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
hps.data.mel_fmin, | |
hps.data.mel_fmax | |
) | |
# src | |
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate) | |
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device) | |
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device) | |
# infer | |
if model == "FreeVC": | |
audio = freevc.infer(c, g=g_tgt) | |
else: | |
audio = freevc_s.infer(c, mel=mel_tgt) | |
audio = audio[0][0].data.cpu().float().numpy() | |
write("out.wav", hps.data.sampling_rate, audio) | |
out = "out.wav" | |
return out | |
model = gr.Dropdown(choices=["FreeVC", "FreeVC-s"], value="FreeVC",type="value", label="Model") | |
audio1 = gr.inputs.Audio(label="Source Audio", type='filepath') | |
audio2 = gr.inputs.Audio(label="Reference Audio", type='filepath') | |
inputs = [model, audio1, audio2] | |
outputs = gr.outputs.Audio(label="Output Audio", type='filepath') | |
title = "FreeVC" | |
description = "Gradio Demo for FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion. To use it, simply upload your audio, or click the example to load. Read more at the links below. Note: It seems that the WavLM checkpoint in HuggingFace is a little different from the one used to train FreeVC, which may degrade the performance a bit." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2210.15418' target='_blank'>Paper</a> | <a href='https://github.com/OlaWod/FreeVC' target='_blank'>Github Repo</a></p>" | |
examples=[["FreeVC", 'p225_001.wav', 'p226_002.wav'], ["FreeVC-s", 'p226_002.wav', 'p225_001.wav']] | |
gr.Interface(convert, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch() | |