kevinwang676
commited on
Commit
·
6ca7e3b
1
Parent(s):
7d16da4
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,42 @@ import torch
|
|
11 |
import pytorch_seed
|
12 |
import time
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
from xml.sax import saxutils
|
16 |
from bark.api import generate_with_settings
|
@@ -30,6 +66,221 @@ from swap_voice import swap_voice_from_audio
|
|
30 |
from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics
|
31 |
from training.train import training_prepare_files, train
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
settings = Settings('config.yaml')
|
34 |
|
35 |
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)):
|
@@ -353,6 +604,36 @@ while run_server:
|
|
353 |
with gr.Row():
|
354 |
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
with gr.Tab("🔮 - Voice Conversion"):
|
357 |
with gr.Row():
|
358 |
swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath")
|
|
|
11 |
import pytorch_seed
|
12 |
import time
|
13 |
|
14 |
+
import math
|
15 |
+
import tempfile
|
16 |
+
from typing import Optional, Tuple, Union
|
17 |
+
|
18 |
+
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
from loguru import logger
|
21 |
+
from PIL import Image
|
22 |
+
from torch import Tensor
|
23 |
+
from torchaudio.backend.common import AudioMetaData
|
24 |
+
|
25 |
+
from df import config
|
26 |
+
from df.enhance import enhance, init_df, load_audio, save_audio
|
27 |
+
from df.io import resample
|
28 |
+
|
29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
model, df, _ = init_df("./DeepFilterNet2", config_allow_defaults=True)
|
31 |
+
model = model.to(device=device).eval()
|
32 |
+
|
33 |
+
fig_noisy: plt.Figure
|
34 |
+
fig_enh: plt.Figure
|
35 |
+
ax_noisy: plt.Axes
|
36 |
+
ax_enh: plt.Axes
|
37 |
+
fig_noisy, ax_noisy = plt.subplots(figsize=(15.2, 4))
|
38 |
+
fig_noisy.set_tight_layout(True)
|
39 |
+
fig_enh, ax_enh = plt.subplots(figsize=(15.2, 4))
|
40 |
+
fig_enh.set_tight_layout(True)
|
41 |
+
|
42 |
+
NOISES = {
|
43 |
+
"None": None,
|
44 |
+
"Kitchen": "samples/dkitchen.wav",
|
45 |
+
"Living Room": "samples/dliving.wav",
|
46 |
+
"River": "samples/nriver.wav",
|
47 |
+
"Cafe": "samples/scafe.wav",
|
48 |
+
}
|
49 |
+
|
50 |
|
51 |
from xml.sax import saxutils
|
52 |
from bark.api import generate_with_settings
|
|
|
66 |
from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics
|
67 |
from training.train import training_prepare_files, train
|
68 |
|
69 |
+
|
70 |
+
# Denoise
|
71 |
+
|
72 |
+
def mix_at_snr(clean, noise, snr, eps=1e-10):
|
73 |
+
"""Mix clean and noise signal at a given SNR.
|
74 |
+
Args:
|
75 |
+
clean: 1D Tensor with the clean signal to mix.
|
76 |
+
noise: 1D Tensor of shape.
|
77 |
+
snr: Signal to noise ratio.
|
78 |
+
Returns:
|
79 |
+
clean: 1D Tensor with gain changed according to the snr.
|
80 |
+
noise: 1D Tensor with the combined noise channels.
|
81 |
+
mix: 1D Tensor with added clean and noise signals.
|
82 |
+
"""
|
83 |
+
clean = torch.as_tensor(clean).mean(0, keepdim=True)
|
84 |
+
noise = torch.as_tensor(noise).mean(0, keepdim=True)
|
85 |
+
if noise.shape[1] < clean.shape[1]:
|
86 |
+
noise = noise.repeat((1, int(math.ceil(clean.shape[1] / noise.shape[1]))))
|
87 |
+
max_start = int(noise.shape[1] - clean.shape[1])
|
88 |
+
start = torch.randint(0, max_start, ()).item() if max_start > 0 else 0
|
89 |
+
logger.debug(f"start: {start}, {clean.shape}")
|
90 |
+
noise = noise[:, start : start + clean.shape[1]]
|
91 |
+
E_speech = torch.mean(clean.pow(2)) + eps
|
92 |
+
E_noise = torch.mean(noise.pow(2))
|
93 |
+
K = torch.sqrt((E_noise / E_speech) * 10 ** (snr / 10) + eps)
|
94 |
+
noise = noise / K
|
95 |
+
mixture = clean + noise
|
96 |
+
logger.debug("mixture: {mixture.shape}")
|
97 |
+
assert torch.isfinite(mixture).all()
|
98 |
+
max_m = mixture.abs().max()
|
99 |
+
if max_m > 1:
|
100 |
+
logger.warning(f"Clipping detected during mixing. Reducing gain by {1/max_m}")
|
101 |
+
clean, noise, mixture = clean / max_m, noise / max_m, mixture / max_m
|
102 |
+
return clean, noise, mixture
|
103 |
+
|
104 |
+
|
105 |
+
def load_audio_gradio(
|
106 |
+
audio_or_file: Union[None, str, Tuple[int, np.ndarray]], sr: int
|
107 |
+
) -> Optional[Tuple[Tensor, AudioMetaData]]:
|
108 |
+
if audio_or_file is None:
|
109 |
+
return None
|
110 |
+
if isinstance(audio_or_file, str):
|
111 |
+
if audio_or_file.lower() == "none":
|
112 |
+
return None
|
113 |
+
# First try default format
|
114 |
+
audio, meta = load_audio(audio_or_file, sr)
|
115 |
+
else:
|
116 |
+
meta = AudioMetaData(-1, -1, -1, -1, "")
|
117 |
+
assert isinstance(audio_or_file, (tuple, list))
|
118 |
+
meta.sample_rate, audio_np = audio_or_file
|
119 |
+
# Gradio documentation says, the shape is [samples, 2], but apparently sometimes its not.
|
120 |
+
audio_np = audio_np.reshape(audio_np.shape[0], -1).T
|
121 |
+
if audio_np.dtype == np.int16:
|
122 |
+
audio_np = (audio_np / (1 << 15)).astype(np.float32)
|
123 |
+
elif audio_np.dtype == np.int32:
|
124 |
+
audio_np = (audio_np / (1 << 31)).astype(np.float32)
|
125 |
+
audio = resample(torch.from_numpy(audio_np), meta.sample_rate, sr)
|
126 |
+
return audio, meta
|
127 |
+
|
128 |
+
|
129 |
+
def demo_fn(speech_upl: str, noise_type: str, snr: int, mic_input: str):
|
130 |
+
if mic_input:
|
131 |
+
speech_upl = mic_input
|
132 |
+
sr = config("sr", 48000, int, section="df")
|
133 |
+
logger.info(f"Got parameters speech_upl: {speech_upl}, noise: {noise_type}, snr: {snr}")
|
134 |
+
snr = int(snr)
|
135 |
+
noise_fn = NOISES[noise_type]
|
136 |
+
meta = AudioMetaData(-1, -1, -1, -1, "")
|
137 |
+
max_s = 10 # limit to 10 seconds
|
138 |
+
if speech_upl is not None:
|
139 |
+
sample, meta = load_audio(speech_upl, sr)
|
140 |
+
max_len = max_s * sr
|
141 |
+
if sample.shape[-1] > max_len:
|
142 |
+
start = torch.randint(0, sample.shape[-1] - max_len, ()).item()
|
143 |
+
sample = sample[..., start : start + max_len]
|
144 |
+
else:
|
145 |
+
sample, meta = load_audio("samples/p232_013_clean.wav", sr)
|
146 |
+
sample = sample[..., : max_s * sr]
|
147 |
+
if sample.dim() > 1 and sample.shape[0] > 1:
|
148 |
+
assert (
|
149 |
+
sample.shape[1] > sample.shape[0]
|
150 |
+
), f"Expecting channels first, but got {sample.shape}"
|
151 |
+
sample = sample.mean(dim=0, keepdim=True)
|
152 |
+
logger.info(f"Loaded sample with shape {sample.shape}")
|
153 |
+
if noise_fn is not None:
|
154 |
+
noise, _ = load_audio(noise_fn, sr) # type: ignore
|
155 |
+
logger.info(f"Loaded noise with shape {noise.shape}")
|
156 |
+
_, _, sample = mix_at_snr(sample, noise, snr)
|
157 |
+
logger.info("Start denoising audio")
|
158 |
+
enhanced = enhance(model, df, sample)
|
159 |
+
logger.info("Denoising finished")
|
160 |
+
lim = torch.linspace(0.0, 1.0, int(sr * 0.15)).unsqueeze(0)
|
161 |
+
lim = torch.cat((lim, torch.ones(1, enhanced.shape[1] - lim.shape[1])), dim=1)
|
162 |
+
enhanced = enhanced * lim
|
163 |
+
if meta.sample_rate != sr:
|
164 |
+
enhanced = resample(enhanced, sr, meta.sample_rate)
|
165 |
+
sample = resample(sample, sr, meta.sample_rate)
|
166 |
+
sr = meta.sample_rate
|
167 |
+
noisy_wav = tempfile.NamedTemporaryFile(suffix="noisy.wav", delete=False).name
|
168 |
+
save_audio(noisy_wav, sample, sr)
|
169 |
+
enhanced_wav = tempfile.NamedTemporaryFile(suffix="enhanced.wav", delete=False).name
|
170 |
+
save_audio(enhanced_wav, enhanced, sr)
|
171 |
+
logger.info(f"saved audios: {noisy_wav}, {enhanced_wav}")
|
172 |
+
ax_noisy.clear()
|
173 |
+
ax_enh.clear()
|
174 |
+
# noisy_wav = gr.make_waveform(noisy_fn, bar_count=200)
|
175 |
+
# enh_wav = gr.make_waveform(enhanced_fn, bar_count=200)
|
176 |
+
return noisy_wav, enhanced_wav
|
177 |
+
|
178 |
+
|
179 |
+
def specshow(
|
180 |
+
spec,
|
181 |
+
ax=None,
|
182 |
+
title=None,
|
183 |
+
xlabel=None,
|
184 |
+
ylabel=None,
|
185 |
+
sr=48000,
|
186 |
+
n_fft=None,
|
187 |
+
hop=None,
|
188 |
+
t=None,
|
189 |
+
f=None,
|
190 |
+
vmin=-100,
|
191 |
+
vmax=0,
|
192 |
+
xlim=None,
|
193 |
+
ylim=None,
|
194 |
+
cmap="inferno",
|
195 |
+
):
|
196 |
+
"""Plots a spectrogram of shape [F, T]"""
|
197 |
+
spec_np = spec.cpu().numpy() if isinstance(spec, torch.Tensor) else spec
|
198 |
+
if ax is not None:
|
199 |
+
set_title = ax.set_title
|
200 |
+
set_xlabel = ax.set_xlabel
|
201 |
+
set_ylabel = ax.set_ylabel
|
202 |
+
set_xlim = ax.set_xlim
|
203 |
+
set_ylim = ax.set_ylim
|
204 |
+
else:
|
205 |
+
ax = plt
|
206 |
+
set_title = plt.title
|
207 |
+
set_xlabel = plt.xlabel
|
208 |
+
set_ylabel = plt.ylabel
|
209 |
+
set_xlim = plt.xlim
|
210 |
+
set_ylim = plt.ylim
|
211 |
+
if n_fft is None:
|
212 |
+
if spec.shape[0] % 2 == 0:
|
213 |
+
n_fft = spec.shape[0] * 2
|
214 |
+
else:
|
215 |
+
n_fft = (spec.shape[0] - 1) * 2
|
216 |
+
hop = hop or n_fft // 4
|
217 |
+
if t is None:
|
218 |
+
t = np.arange(0, spec_np.shape[-1]) * hop / sr
|
219 |
+
if f is None:
|
220 |
+
f = np.arange(0, spec_np.shape[0]) * sr // 2 / (n_fft // 2) / 1000
|
221 |
+
im = ax.pcolormesh(
|
222 |
+
t, f, spec_np, rasterized=True, shading="auto", vmin=vmin, vmax=vmax, cmap=cmap
|
223 |
+
)
|
224 |
+
if title is not None:
|
225 |
+
set_title(title)
|
226 |
+
if xlabel is not None:
|
227 |
+
set_xlabel(xlabel)
|
228 |
+
if ylabel is not None:
|
229 |
+
set_ylabel(ylabel)
|
230 |
+
if xlim is not None:
|
231 |
+
set_xlim(xlim)
|
232 |
+
if ylim is not None:
|
233 |
+
set_ylim(ylim)
|
234 |
+
return im
|
235 |
+
|
236 |
+
|
237 |
+
def spec_im(
|
238 |
+
audio: torch.Tensor,
|
239 |
+
figsize=(15, 5),
|
240 |
+
colorbar=False,
|
241 |
+
colorbar_format=None,
|
242 |
+
figure=None,
|
243 |
+
labels=True,
|
244 |
+
**kwargs,
|
245 |
+
) -> Image:
|
246 |
+
audio = torch.as_tensor(audio)
|
247 |
+
if labels:
|
248 |
+
kwargs.setdefault("xlabel", "Time [s]")
|
249 |
+
kwargs.setdefault("ylabel", "Frequency [Hz]")
|
250 |
+
n_fft = kwargs.setdefault("n_fft", 1024)
|
251 |
+
hop = kwargs.setdefault("hop", 512)
|
252 |
+
w = torch.hann_window(n_fft, device=audio.device)
|
253 |
+
spec = torch.stft(audio, n_fft, hop, window=w, return_complex=False)
|
254 |
+
spec = spec.div_(w.pow(2).sum())
|
255 |
+
spec = torch.view_as_complex(spec).abs().clamp_min(1e-12).log10().mul(10)
|
256 |
+
kwargs.setdefault("vmax", max(0.0, spec.max().item()))
|
257 |
+
|
258 |
+
if figure is None:
|
259 |
+
figure = plt.figure(figsize=figsize)
|
260 |
+
figure.set_tight_layout(True)
|
261 |
+
if spec.dim() > 2:
|
262 |
+
spec = spec.squeeze(0)
|
263 |
+
im = specshow(spec, **kwargs)
|
264 |
+
if colorbar:
|
265 |
+
ckwargs = {}
|
266 |
+
if "ax" in kwargs:
|
267 |
+
if colorbar_format is None:
|
268 |
+
if kwargs.get("vmin", None) is not None or kwargs.get("vmax", None) is not None:
|
269 |
+
colorbar_format = "%+2.0f dB"
|
270 |
+
ckwargs = {"ax": kwargs["ax"]}
|
271 |
+
plt.colorbar(im, format=colorbar_format, **ckwargs)
|
272 |
+
figure.canvas.draw()
|
273 |
+
return Image.frombytes("RGB", figure.canvas.get_width_height(), figure.canvas.tostring_rgb())
|
274 |
+
|
275 |
+
|
276 |
+
def toggle(choice):
|
277 |
+
if choice == "mic":
|
278 |
+
return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
|
279 |
+
else:
|
280 |
+
return gr.update(visible=False, value=None), gr.update(visible=True, value=None)
|
281 |
+
|
282 |
+
# Bark
|
283 |
+
|
284 |
settings = Settings('config.yaml')
|
285 |
|
286 |
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)):
|
|
|
604 |
with gr.Row():
|
605 |
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
606 |
|
607 |
+
with gr.Row():
|
608 |
+
with gr.Column():
|
609 |
+
radio = gr.Radio(
|
610 |
+
["mic", "file"], value="file", label="How would you like to upload your audio?", visible=False
|
611 |
+
)
|
612 |
+
mic_input = gr.Mic(label="Input", type="filepath", visible=False)
|
613 |
+
audio_file = output_audio
|
614 |
+
inputs = [
|
615 |
+
audio_file,
|
616 |
+
gr.Dropdown(
|
617 |
+
label="Add background noise",
|
618 |
+
choices=list(NOISES.keys()),
|
619 |
+
value="None", visible =False,
|
620 |
+
),
|
621 |
+
gr.Dropdown(
|
622 |
+
label="Noise Level (SNR)",
|
623 |
+
choices=["-5", "0", "10", "20"],
|
624 |
+
value="0", visible =False,
|
625 |
+
),
|
626 |
+
mic_input,
|
627 |
+
]
|
628 |
+
btn_denoise = gr.Button("Denoise")
|
629 |
+
with gr.Column():
|
630 |
+
outputs = [
|
631 |
+
gr.Audio(type="filepath", label="Noisy audio"),
|
632 |
+
gr.Audio(type="filepath", label="Enhanced audio"),
|
633 |
+
]
|
634 |
+
btn_denoise.click(fn=demo_fn, inputs=inputs, outputs=outputs)
|
635 |
+
radio.change(toggle, radio, [mic_input, audio_file])
|
636 |
+
|
637 |
with gr.Tab("🔮 - Voice Conversion"):
|
638 |
with gr.Row():
|
639 |
swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath")
|