File size: 4,780 Bytes
b84b595
 
 
 
 
 
 
 
 
 
 
 
5e540eb
 
 
 
 
 
 
 
 
 
 
 
b84b595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import torch
import librosa
import gradio as gr
from scipy.io.wavfile import write
from transformers import WavLMModel

import utils
from models import SynthesizerTrn
from mel_processing import mel_spectrogram_torch
from speaker_encoder.voice_encoder import SpeakerEncoder

import time
from textwrap import dedent

import mdtex2html
from loguru import logger
from transformers import AutoModel, AutoTokenizer

from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio

'''
def get_wavlm():
    os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU')
    shutil.move('WavLM-Large.pt', 'wavlm')
'''

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("Loading FreeVC...")
hps = utils.get_hparams_from_file("configs/freevc.json")
freevc = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).to(device)
_ = freevc.eval()
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None)
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')

print("Loading FreeVC(24k)...")
hps = utils.get_hparams_from_file("configs/freevc-24.json")
freevc_24 = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).to(device)
_ = freevc_24.eval()
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None)

print("Loading FreeVC-s...")
hps = utils.get_hparams_from_file("configs/freevc-s.json")
freevc_s = SynthesizerTrn(
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    **hps.model).to(device)
_ = freevc_s.eval()
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None)

print("Loading WavLM for content...")
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)
 
def convert(model, src, tgt):
    with torch.no_grad():
        # tgt
        wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
        wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
        if model == "FreeVC" or model == "FreeVC (24kHz)":
            g_tgt = smodel.embed_utterance(wav_tgt)
            g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
        else:
            wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
            mel_tgt = mel_spectrogram_torch(
                wav_tgt, 
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.hop_length,
                hps.data.win_length,
                hps.data.mel_fmin,
                hps.data.mel_fmax
            )
        # src
        wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
        wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device)
        c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device)
        # infer
        if model == "FreeVC":
            audio = freevc.infer(c, g=g_tgt)
        elif model == "FreeVC-s":
            audio = freevc_s.infer(c, mel=mel_tgt)
        else:
            audio = freevc_24.infer(c, g=g_tgt)
        audio = audio[0][0].data.cpu().float().numpy()
        if model == "FreeVC" or model == "FreeVC-s":
            write("out.wav", hps.data.sampling_rate, audio)
        else:
            write("out.wav", 24000, audio)
    out = "out.wav"
    return out
    
model = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC",type="value", label="Model") 
audio1 = gr.inputs.Audio(label="Source Audio", type='filepath')
audio2 = gr.inputs.Audio(label="Reference Audio", type='filepath')
inputs = [model, audio1, audio2]
outputs =  gr.outputs.Audio(label="Output Audio", type='filepath')

title = "FreeVC"
description = "Gradio Demo for FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion. To use it, simply upload your audio, or click the example to load. Read more at the links below. Note: It seems that the WavLM checkpoint in HuggingFace is a little different from the one used to train FreeVC, which may degrade the performance a bit. In addition, speaker similarity can be largely affected if there are too much silence in the reference audio, so please <strong>trim</strong> it before submitting."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2210.15418' target='_blank'>Paper</a> | <a href='https://github.com/OlaWod/FreeVC' target='_blank'>Github Repo</a></p>"

examples=[["FreeVC", 'p225_001.wav', 'p226_002.wav'], ["FreeVC-s", 'p226_002.wav', 'p225_001.wav'], ["FreeVC (24kHz)", 'p225_001.wav', 'p226_002.wav']]

gr.Interface(convert, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch()