Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Copyright 2020 Tomoki Hayashi | |
# MIT License (https://opensource.org/licenses/MIT) | |
"""Residual stack module in MelGAN.""" | |
import torch | |
from . import CausalConv1d | |
class ResidualStack(torch.nn.Module): | |
"""Residual stack module introduced in MelGAN.""" | |
def __init__(self, | |
kernel_size=3, | |
channels=32, | |
dilation=1, | |
bias=True, | |
nonlinear_activation="LeakyReLU", | |
nonlinear_activation_params={"negative_slope": 0.2}, | |
pad="ReflectionPad1d", | |
pad_params={}, | |
use_causal_conv=False, | |
): | |
"""Initialize ResidualStack module. | |
Args: | |
kernel_size (int): Kernel size of dilation convolution layer. | |
channels (int): Number of channels of convolution layers. | |
dilation (int): Dilation factor. | |
bias (bool): Whether to add bias parameter in convolution layers. | |
nonlinear_activation (str): Activation function module name. | |
nonlinear_activation_params (dict): Hyperparameters for activation function. | |
pad (str): Padding function module name before dilated convolution layer. | |
pad_params (dict): Hyperparameters for padding function. | |
use_causal_conv (bool): Whether to use causal convolution. | |
""" | |
super(ResidualStack, self).__init__() | |
# defile residual stack part | |
if not use_causal_conv: | |
assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size." | |
self.stack = torch.nn.Sequential( | |
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
getattr(torch.nn, pad)((kernel_size - 1) // 2 * dilation, **pad_params), | |
torch.nn.Conv1d(channels, channels, kernel_size, dilation=dilation, bias=bias), | |
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
torch.nn.Conv1d(channels, channels, 1, bias=bias), | |
) | |
else: | |
self.stack = torch.nn.Sequential( | |
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
CausalConv1d(channels, channels, kernel_size, dilation=dilation, | |
bias=bias, pad=pad, pad_params=pad_params), | |
getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), | |
torch.nn.Conv1d(channels, channels, 1, bias=bias), | |
) | |
# defile extra layer for skip connection | |
self.skip_layer = torch.nn.Conv1d(channels, channels, 1, bias=bias) | |
def forward(self, c): | |
"""Calculate forward propagation. | |
Args: | |
c (Tensor): Input tensor (B, channels, T). | |
Returns: | |
Tensor: Output tensor (B, chennels, T). | |
""" | |
return self.stack(c) + self.skip_layer(c) | |