Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
"""Upsampling module. | |
This code is modified from https://github.com/r9y9/wavenet_vocoder. | |
""" | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from . import Conv1d | |
class Stretch2d(torch.nn.Module): | |
"""Stretch2d module.""" | |
def __init__(self, x_scale, y_scale, mode="nearest"): | |
"""Initialize Stretch2d module. | |
Args: | |
x_scale (int): X scaling factor (Time axis in spectrogram). | |
y_scale (int): Y scaling factor (Frequency axis in spectrogram). | |
mode (str): Interpolation mode. | |
""" | |
super(Stretch2d, self).__init__() | |
self.x_scale = x_scale | |
self.y_scale = y_scale | |
self.mode = mode | |
def forward(self, x): | |
"""Calculate forward propagation. | |
Args: | |
x (Tensor): Input tensor (B, C, F, T). | |
Returns: | |
Tensor: Interpolated tensor (B, C, F * y_scale, T * x_scale), | |
""" | |
return F.interpolate( | |
x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode) | |
class Conv2d(torch.nn.Conv2d): | |
"""Conv2d module with customized initialization.""" | |
def __init__(self, *args, **kwargs): | |
"""Initialize Conv2d module.""" | |
super(Conv2d, self).__init__(*args, **kwargs) | |
def reset_parameters(self): | |
"""Reset parameters.""" | |
self.weight.data.fill_(1. / np.prod(self.kernel_size)) | |
if self.bias is not None: | |
torch.nn.init.constant_(self.bias, 0.0) | |
class UpsampleNetwork(torch.nn.Module): | |
"""Upsampling network module.""" | |
def __init__(self, | |
upsample_scales, | |
nonlinear_activation=None, | |
nonlinear_activation_params={}, | |
interpolate_mode="nearest", | |
freq_axis_kernel_size=1, | |
use_causal_conv=False, | |
): | |
"""Initialize upsampling network module. | |
Args: | |
upsample_scales (list): List of upsampling scales. | |
nonlinear_activation (str): Activation function name. | |
nonlinear_activation_params (dict): Arguments for specified activation function. | |
interpolate_mode (str): Interpolation mode. | |
freq_axis_kernel_size (int): Kernel size in the direction of frequency axis. | |
""" | |
super(UpsampleNetwork, self).__init__() | |
self.use_causal_conv = use_causal_conv | |
self.up_layers = torch.nn.ModuleList() | |
for scale in upsample_scales: | |
# interpolation layer | |
stretch = Stretch2d(scale, 1, interpolate_mode) | |
self.up_layers += [stretch] | |
# conv layer | |
assert (freq_axis_kernel_size - 1) % 2 == 0, "Not support even number freq axis kernel size." | |
freq_axis_padding = (freq_axis_kernel_size - 1) // 2 | |
kernel_size = (freq_axis_kernel_size, scale * 2 + 1) | |
if use_causal_conv: | |
padding = (freq_axis_padding, scale * 2) | |
else: | |
padding = (freq_axis_padding, scale) | |
conv = Conv2d(1, 1, kernel_size=kernel_size, padding=padding, bias=False) | |
self.up_layers += [conv] | |
# nonlinear | |
if nonlinear_activation is not None: | |
nonlinear = getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params) | |
self.up_layers += [nonlinear] | |
def forward(self, c): | |
"""Calculate forward propagation. | |
Args: | |
c : Input tensor (B, C, T). | |
Returns: | |
Tensor: Upsampled tensor (B, C, T'), where T' = T * prod(upsample_scales). | |
""" | |
c = c.unsqueeze(1) # (B, 1, C, T) | |
for f in self.up_layers: | |
if self.use_causal_conv and isinstance(f, Conv2d): | |
c = f(c)[..., :c.size(-1)] | |
else: | |
c = f(c) | |
return c.squeeze(1) # (B, C, T') | |
class ConvInUpsampleNetwork(torch.nn.Module): | |
"""Convolution + upsampling network module.""" | |
def __init__(self, | |
upsample_scales, | |
nonlinear_activation=None, | |
nonlinear_activation_params={}, | |
interpolate_mode="nearest", | |
freq_axis_kernel_size=1, | |
aux_channels=80, | |
aux_context_window=0, | |
use_causal_conv=False | |
): | |
"""Initialize convolution + upsampling network module. | |
Args: | |
upsample_scales (list): List of upsampling scales. | |
nonlinear_activation (str): Activation function name. | |
nonlinear_activation_params (dict): Arguments for specified activation function. | |
mode (str): Interpolation mode. | |
freq_axis_kernel_size (int): Kernel size in the direction of frequency axis. | |
aux_channels (int): Number of channels of pre-convolutional layer. | |
aux_context_window (int): Context window size of the pre-convolutional layer. | |
use_causal_conv (bool): Whether to use causal structure. | |
""" | |
super(ConvInUpsampleNetwork, self).__init__() | |
self.aux_context_window = aux_context_window | |
self.use_causal_conv = use_causal_conv and aux_context_window > 0 | |
# To capture wide-context information in conditional features | |
kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1 | |
# NOTE(kan-bayashi): Here do not use padding because the input is already padded | |
self.conv_in = Conv1d(aux_channels, aux_channels, kernel_size=kernel_size, bias=False) | |
self.upsample = UpsampleNetwork( | |
upsample_scales=upsample_scales, | |
nonlinear_activation=nonlinear_activation, | |
nonlinear_activation_params=nonlinear_activation_params, | |
interpolate_mode=interpolate_mode, | |
freq_axis_kernel_size=freq_axis_kernel_size, | |
use_causal_conv=use_causal_conv, | |
) | |
def forward(self, c): | |
"""Calculate forward propagation. | |
Args: | |
c : Input tensor (B, C, T'). | |
Returns: | |
Tensor: Upsampled tensor (B, C, T), | |
where T = (T' - aux_context_window * 2) * prod(upsample_scales). | |
Note: | |
The length of inputs considers the context window size. | |
""" | |
c_ = self.conv_in(c) | |
c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_ | |
return self.upsample(c) | |