Spaces:
Running
Running
File size: 6,597 Bytes
9016314 d9e9124 9016314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import numpy as np
import os
import random
import librosa
import parselmouth
from utils.tools import load_wav
np.random.seed(0)
random.seed(0)
def REAPER_F0(wav_path, sr=24000, frame_period=0.01): # frame_period s
if not os.path.isfile(f'{wav_path}.f0'):
cmd = f'REAPER/build/reaper -i {wav_path} -f {wav_path}.f0 -e {frame_period} -x 1000 -m 65 -a'
os.system(cmd)
f0 = []
try:
with open(f'{wav_path}.f0', 'r') as rf:
for line in rf.readlines()[7:]:
f0.append(float(line.split()[2]))
except FileNotFoundError as e:
return None
cmd = f'rm -f {wav_path}.f0'
os.system(cmd)
f0 = np.array(f0)
minus_one_indexes = (f0 == -1)
f0[minus_one_indexes] = 0
return f0
def ParselMouth_F0(wav, sr=24000, frame_period=0.01):
wav = parselmouth.Sound(wav, sampling_frequency=sr)
pitch = wav.to_pitch(time_step=frame_period, pitch_floor=65, pitch_ceiling=1000)
f0 = pitch.selected_array['frequency']
return f0
def PYIN_F0(wav, sr=24000, frame_period=10):
fmin = librosa.note_to_hz('C2') # ~65Hz
fmax = librosa.note_to_hz('C7') # ~2093Hz
# fmax = fs/2
f0, voiced_flag, voiced_prob = librosa.pyin(
wav, fmin=fmin, fmax=fmax, sr=sr, frame_length=int(sr*frame_period/1000*4))
f0 = np.where(np.isnan(f0), 0.0, f0)
return f0
def pad_arrays(arrays: list[np.ndarray], std_len: int):
"""
Pad arrays value to a specified standard length.
Args:
arrays (List[numpy.ndarray]): List of arrays to be padded.
std_len (int): Standard length to which the arrays will be padded.
Returns:
List[numpy.ndarray]: List of padded arrays.
Raises:
ValueError: If the length of any array in the input list is greater than the specified standard length.
"""
padded_arrays = []
for arr in arrays:
cur_len = len(arr)
if cur_len <= std_len:
pad_width = std_len - cur_len
left_pad = pad_width // 2
right_pad = pad_width - left_pad
padded_arr = np.pad(arr, (left_pad, right_pad), 'edge')
padded_arrays.append(padded_arr)
else:
raise ValueError(f'cur_len: {cur_len}, std_len: {std_len}.')
return padded_arrays
def compute_pitch(wav_path: str, pitch_path: str=None, frame_period=0.01):
"""
Computes the pitch information from an audio waveform.
Args:
wav_path (str): Path to the audio waveform file (must be 24kHz).
pitch_path (str, optional): Path to save or load the computed pitch information as a numpy file.
If specified, the function will first attempt to load the pitch information from this path.
If the file does not exist, the pitch will be computed and saved to this path.
Defaults to None.
frame_period (float, optional): Time duration in seconds for each frame. Defaults to 0.01.
Returns:
numpy.ndarray: Computed pitch information.
Notes:
For precise pitch representation, the pitch values are extracted by the median of three methods:
the PYIN, the REAPER, and the Parselmouth.
"""
import time
if pitch_path is not None and os.path.isfile(pitch_path):
pitch = np.load(pitch_path)
return pitch
else:
# extract pitch using 24kHz audio
wav, fs = load_wav(wav_path, 24000)
f0_std_len = wav.shape[0] // int(frame_period*fs) + 1
compute_median = []
# Compute pitch using PYIN algorithm
f0 = PYIN_F0(wav, sr=fs, frame_period=frame_period*1000)
compute_median.append(f0)
# Compute pitch using ParselMouth algorithm
f0 = ParselMouth_F0(wav, sr=fs, frame_period=frame_period)
compute_median.append(f0)
# Compute pitch using REAPER algorithm
f0 = REAPER_F0(wav_path, sr=fs, frame_period=frame_period)
if f0 is not None:
compute_median.append(f0)
# Compute median F0
compute_median = pad_arrays(compute_median, f0_std_len)
compute_median = np.array(compute_median)
median_f0 = np.median(compute_median, axis=0)
if pitch_path is not None:
os.makedirs(pitch_path.parent, exist_ok=True)
np.save(pitch_path, median_f0)
return median_f0
def coarse_f0(f0):
f0_bin = 256
f0_max = 1000.0
f0_min = 65.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (
f0_bin - 2
) / (f0_mel_max - f0_mel_min) + 1
# use 0 or 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
f0_coarse = np.rint(f0_mel).astype(int)
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
f0_coarse.max(),
f0_coarse.min(),
)
return f0_coarse
def extract_pitch_ref(wav_path: str, ref_path: str, predefined_factor=0, speech_enroll=False):
"""
Extracts pitch information from an audio waveform and adjusts it based on a reference audio.
Args:
wav_path (str): Path to the audio waveform file.
ref_path (str): Path to the reference audio waveform file.
predefined_factor (float, optional): Predefined factor to adjust the pitch.
If non-zero, this factor will be used instead of computing it from the reference audio. Defaults to 0.
speech_enroll (bool, optional): Flag indicating whether the pitch adjustment is for speech enrollment. Defaults to False.
Returns:
Tuple[numpy.ndarray, float]: Tuple containing the adjusted pitch information (source_f0) and the pitch shift factor (factor).
"""
source_f0 = compute_pitch(wav_path)
nonzero_indices = np.nonzero(source_f0)
source_mean = np.mean(source_f0[nonzero_indices], axis=0)
if predefined_factor != 0.:
print(f'Using predefined factor {predefined_factor}.')
factor = predefined_factor
else:
# Compute mean and std for pitch with the reference audio
ref_wav, fs = load_wav(ref_path)
ref_f0 = ParselMouth_F0(ref_wav, fs)
nonzero_indices = np.nonzero(ref_f0)
ref_mean = np.mean(ref_f0[nonzero_indices], axis=0)
factor = ref_mean / source_mean
if speech_enroll:
factor = factor * 1.2
print(f'pitch shift factor: {factor:.2f}')
# Modify f0 to fit with different persons
source_f0 = source_f0 * factor
return source_f0, factor
|