File size: 45,184 Bytes
9f5b176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
/*
Copyright 2015 Google Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Author: [email protected] (David Talkin)

// Implementation of the EpochTracker class.  This does all of the
// processing necessary to estimate the F0, voicing state and epochs
// (glottal-closure instants) in human speech signals.  See
// epoch_tracker.h for details.

#include "epoch_tracker/epoch_tracker.h"

#include <string>
#include <vector>

#include "epoch_tracker/fd_filter.h"
#include "epoch_tracker/lpc_analyzer.h"
#include "epoch_tracker/fft.h"

const int kMinSampleRate = 6000;

EpochTracker::EpochTracker(void) : sample_rate_(-1.0) {
  SetParameters();
}

EpochTracker::~EpochTracker(void) {
  CleanUp();
}

static inline int32_t RoundUp(float val) {
  return static_cast<int32_t>(val + 0.5);
}

void EpochTracker::CleanUp(void) {
  for (size_t i = 0; i < resid_peaks_.size(); ++i) {
    for (size_t j = 0; j < resid_peaks_[i].future.size(); ++j) {
      delete resid_peaks_[i].future[j];
    }
  }
  resid_peaks_.clear();
  output_.clear();
  best_corr_.clear();
}

void EpochTracker::SetParameters(void) {
  // Externally-settable control parameters:
  // Period for the returned F0 signal.
  external_frame_interval_ = kExternalFrameInterval;
  do_highpass_ = kDoHighpass;  // Enables highpassing of input signal.
  // Enables Hilbert transformation of the input data.
  do_hilbert_transform_ = kDoHilbertTransform;
  max_f0_search_ = kMaxF0Search;  // Maximum F0 to search for.
  min_f0_search_ = kMinF0Search;  // Minimum F0 to search for.
  // Pulse spacing to use in unvoiced regions of the returned epoch signal.
  unvoiced_pulse_interval_ = kUnvoicedPulseInterval;
  debug_name_ = kDebugName;  // base path for all debugging signals.

  // Internal feature-computation parameters:
  // For internal feature computations
  internal_frame_interval_ = kInternalFrameInterval;
  // for the high-pass filter
  corner_frequency_ = 80.0;
  filter_duration_ = 0.05;
  // for the LPC inverse filter.
  frame_duration_ = 0.02;  // window size (sec)
  lpc_frame_interval_ = 0.01;  // (sec)
  preemphasis_ = 0.98;  // preemphasis for LPC analysis
  noise_floor_ = 70.0;  // SNR in dB simulated during LPC analysis.
  // for computing LPC residual peak quality.
  peak_delay_ = 0.0004;  // for measuring prominence
  skew_delay_ = 0.00015;  // for measuring shape
  peak_val_wt_ = 0.1;
  peak_prominence_wt_ = 0.3;
  peak_skew_wt_ = 0.1;
  peak_quality_floor_ = 0.01;
  // for computing voice-transition pseudo-probabilities
  time_span_ = 0.020;  // the interval (sec) centered on the
  // measurement point, used to compute parameter
  // deltas.
  level_change_den_ = 30.0;  // max. dB level change expected over
  // time_span_ for bandpassed RMS for
  // computing pseudo-probability of
  // voicing.
  min_rms_db_ = 20.0;  // level floor in dB
  // window size for computing amplitude-normalizing RMS
  ref_dur_ = 0.02;
  // low and high frequency limits for bandpassed RMS used in voicing indicator
  min_freq_for_rms_ = 100.0;
  max_freq_for_rms_ = 1000.0;
  // duration of integrator for bandpassed RMS
  rms_window_dur_ = 0.025;
  // window duration, in seconds, for NCCF computations
  correlation_dur_ = 0.0075;
  // ignore any NCCF peaks less than this
  correlation_thresh_ = 0.2;

  // Parametrs used by the dynamic-programming tracker:
  // reward for inserting another period
  reward_ = -1.5;
  // weight given to deviation of inter-pulse interval from the
  // closest NCCF peak lag
  period_deviation_wt_ = 1.0;
  // weight given to the quality of the residual peak
  peak_quality_wt_ = 1.3;
  // cost of the unvoiced hypothesis
  unvoiced_cost_ = kUnvoicedCost;
  // cost of high NCCF values in hypothetical unvoiced regions
  nccf_uv_peak_wt_ = 0.9;
  // weight given to period length
  period_wt_ = 0.0002;
  // weight given to the pseudo-probability of voicing feature
  level_wt_ = 0.8;
  // weight given to period-length differences between adjacent periods.
  freq_trans_wt_ = 1.8;
  // cost of switching between voicing states; modulated by voicing
  // onset/offset probs.
  voice_transition_factor_ = 1.4;

  // Parameters used to generate final outputs:
  // pad time in seconds to add to the last measured period during
  // output of periodically-resampled data
  endpoint_padding_ = 0.01;
}

bool EpochTracker::Init(const int16_t* input, int32_t n_input, float sample_rate,
                        float min_f0_search, float max_f0_search,
                        bool do_highpass, bool do_hilbert_transform) {
  if (input && (sample_rate > 6000.0) && (n_input > (sample_rate * 0.05)) &&
      (min_f0_search < max_f0_search) && (min_f0_search > 0.0)) {
    CleanUp();
    min_f0_search_ = min_f0_search;
    max_f0_search_ = max_f0_search;
    sample_rate_ = sample_rate;
    int16_t* input_p = const_cast<int16_t *>(input);
    if (do_highpass) {
      input_p = HighpassFilter(input_p, n_input, sample_rate,
                               corner_frequency_, filter_duration_);
    }
    signal_.resize(n_input);
    if (do_hilbert_transform) {
      HilbertTransform(input_p, n_input, &(signal_.front()));
    } else {
      for (int32_t i = 0; i < n_input; ++i) {
        signal_[i] = input_p[i];
      }
    }
    if (input_p != input) {
      delete [] input_p;
    }
    return true;
  }
  return false;
}

void EpochTracker::HilbertTransform(int16_t* input, int32_t n_input,
                                    float* output) {
  FFT ft = FFT(FFT::fft_pow2_from_window_size(n_input));
  int32_t n_fft = ft.get_fftSize();
  float* re = new float[n_fft];
  float* im = new float[n_fft];
  for (int i = 0; i < n_input; ++i) {
    re[i] = input[i];
    im[i] = 0.0;
  }
  for (int i = n_input; i < n_fft; ++i) {
    re[i] = 0.0;
    im[i] = 0.0;
  }
  ft.fft(re, im);
  for (int i = 1; i < n_fft/2; ++i) {
    float tmp = im[i];
    im[i] = -re[i];
    re[i] = tmp;
  }
  re[0] = im[0] = 0.0;
  for (int i = n_fft/2 + 1; i < n_fft; ++i) {
    float tmp = im[i];
    im[i] = re[i];
    re[i] = -tmp;
  }
  ft.ifft(re, im);
  for (int i = 0; i < n_input; ++i) {
    output[i] = re[i] / n_fft;
  }
  delete [] re;
  delete [] im;
}


int16_t* EpochTracker::HighpassFilter(int16_t* input, int32_t n_input,
                                      float sample_rate, float corner_freq,
				      float fir_duration) {
  FdFilter filter(sample_rate, corner_freq, true, fir_duration, false);
  int16_t* filtered_data = new int16_t[n_input];
  int32_t max_buffer_size = filter.GetMaxInputSize();
  int32_t to_process = n_input;
  bool start = true;
  bool end = false;
  int32_t input_index = 0;
  int32_t output_index = 0;
  while (to_process > 0) {
    int32_t to_send = to_process;
    if (to_send > max_buffer_size) {
      to_send = max_buffer_size;
    } else {
      end = true;
    }
    int32_t samples_returned = filter.FilterArray(input + input_index, to_send,
                                                  start, end,
                                                  filtered_data + output_index,
                                                  n_input - output_index);
    input_index += to_send;
    to_process -= to_send;
    output_index += samples_returned;
    start = false;
  }
  return filtered_data;
}


static float LpcDcGain(float* lpc, int32_t order) {
  float sum = 0.0;
  for (int32_t i = 0; i <= order; ++i) {
    sum += lpc[i];
  }
  if (sum > 0.0) {
    return sum;
  } else {
    return 1.0;
  }
}


static void MakeDeltas(float* now, float* next, int32_t size, int32_t n_steps,
                       float* deltas) {
  for (int32_t i = 0; i < size; ++i) {
    deltas[i] = (next[i] - now[i]) / n_steps;
  }
}


bool EpochTracker::GetLpcResidual(const std::vector<float>& input, float sample_rate,
                                  std::vector<float>* output) {
  int32_t n_input = input.size();
  if (!((n_input > 0) && (sample_rate > 0.0) && output)) {
    return false;
  }
  output->resize(n_input);
  int32_t frame_step = RoundUp(sample_rate * lpc_frame_interval_);
  int32_t frame_size = RoundUp(sample_rate * frame_duration_);
  int32_t n_frames = 1 + ((n_input - frame_size) / frame_step);
  int32_t n_analyzed = ((n_frames - 1) * frame_step) + frame_size;
  // Must have one more than frame size to do a complete frame.
  if (n_analyzed <= n_input) {
    n_frames--;
    if (n_frames <= 0) {
      return false;
    }
  }
  LpcAnalyzer lp;
  int32_t order = lp.GetLpcOrder(sample_rate);
  float* lpc = new float[order + 1];
  float* old_lpc = new float[order + 1];
  float* delta_lpc = new float[order + 1];
  float norm_error = 0.0;
  float preemp_rms = 0.0;

#define  RELEASE_MEMORY() {                     \
    delete [] lpc;                              \
    delete [] old_lpc;                          \
    delete [] delta_lpc;                        \
  }

  if (!lp.ComputeLpc(order, noise_floor_, frame_size, &(input.front()),
                     old_lpc, NULL, NULL, &norm_error, &preemp_rms,
                     preemphasis_)) {
    RELEASE_MEMORY();
    return false;
  }
  for (int32_t i = 0; i <= order; ++i) {
    delta_lpc[i] = 0.0;
    (*output)[i] = 0.0;
  }
  float old_gain = LpcDcGain(old_lpc, order);
  float new_gain = 1.0;
  int32_t n_to_filter = (frame_size / 2) - order;  // How many samples
  // to process before
  // computing the next
  // LPC frame.
  int32_t input_p = 0;  // Where to get the next frame for LPC analysis
  int32_t output_p = order;  // where to store output samples.
  int32_t proc_p = 0;  // Where to pick up samples for input to the filter

  // Main processing loop:
  // Compute a new frame of LPC
  // Compute the DC gain for the new LPC
  // Compute delta DC gain.
  // Compute the LPC deltas.
  // For each point in the frame:
  //   Use old_lpc to produce an output point.
  //   Update the old LPCs and the DC gain
  // As soon as the center of the current frame is reached, compute
  // the LPC for the next frame.
  for ( ; n_frames > 0; --n_frames, input_p += frame_step,
            n_to_filter = frame_step) {
    if (!lp.ComputeLpc(order, noise_floor_, frame_size,
                       (&(input.front())) + input_p, lpc, NULL, NULL,
                       &norm_error, &preemp_rms, preemphasis_)) {
      RELEASE_MEMORY();
      return false;
    }
    new_gain = LpcDcGain(lpc, order);
    float delta_gain = (new_gain - old_gain) / n_to_filter;
    MakeDeltas(old_lpc, lpc, order+1, n_to_filter, delta_lpc);
    for (int32_t sample = 0; sample < n_to_filter; ++sample, ++proc_p,
             ++output_p) {
      float sum = 0.0;
      int32_t mem = proc_p;
      for (int32_t k = order; k > 0; --k, ++mem) {
        sum += (old_lpc[k] * input[mem]);
        old_lpc[k] += delta_lpc[k];
      }
      sum += input[mem];  // lpc[0] is always 1.0
      (*output)[output_p] = sum / old_gain;
      old_gain += delta_gain;
    }
  }
  RELEASE_MEMORY();
  return true;
}

// Note that GetResidualPulses assumes the LPC residual is in the
// "correct" polarity, with the GCI pulses of interest being negative
// pulses with a gradual fall and an abrupt rise.
void EpochTracker::GetResidualPulses(void) {
  int32_t peak_ind = RoundUp(peak_delay_ * sample_rate_);
  int32_t skew_ind = RoundUp(skew_delay_ * sample_rate_);
  float min_peak = -1.0;  // minimum value that will be considered as a peak
  int32_t limit = norm_residual_.size() - peak_ind;
  resid_peaks_.resize(0);
  peaks_debug_.resize(residual_.size());
  for (size_t i = 0; i < peaks_debug_.size(); ++i) {
    peaks_debug_[i] = 0.0;
  }
  for (int32_t i = peak_ind; i < limit; ++i) {
    float val = norm_residual_[i];
    if (val > min_peak) {
      continue;
    }
    if ((norm_residual_[i-1] > val) && (val <= norm_residual_[i+1])) {
      float vm_peak = norm_residual_[i - peak_ind];
      float vp_peak = norm_residual_[i + peak_ind];
      if ((vm_peak < val) || (vp_peak < val)) {
        continue;
      }
      float vm_skew = norm_residual_[i - skew_ind];
      float vp_skew = norm_residual_[i + skew_ind];
      float sharp = (0.5 * (vp_peak + vm_peak)) - val;
      float skew = -(vm_skew - vp_skew);
      ResidPeak p;
      p.resid_index = i;
      float time = static_cast<float>(i) / sample_rate_;
      p.frame_index = RoundUp(time / internal_frame_interval_);
      if (p.frame_index >= n_feature_frames_) {
        p.frame_index = n_feature_frames_ - 1;
      }
      p.peak_quality = (-val * peak_val_wt_) + (skew * peak_skew_wt_) +
          (sharp * peak_prominence_wt_);
      if (p.peak_quality < peak_quality_floor_) {
        p.peak_quality = peak_quality_floor_;
      }
      resid_peaks_.push_back(p);
      peaks_debug_[i] = p.peak_quality;
    }
  }
}


void EpochTracker::GetVoiceTransitionFeatures(void) {
  int32_t frame_offset = RoundUp(0.5 * time_span_ / internal_frame_interval_);
  if (frame_offset <= 0) {
    frame_offset = 1;
  }
  voice_onset_prob_.resize(n_feature_frames_);
  voice_offset_prob_.resize(n_feature_frames_);
  int32_t limit = n_feature_frames_ - frame_offset;
  for (int32_t frame = frame_offset; frame < limit; ++frame) {
    float delta_rms = (bandpassed_rms_[frame + frame_offset] -
                       bandpassed_rms_[frame - frame_offset]) / level_change_den_;
    if (delta_rms > 1.0) {
      delta_rms = 1.0;
    } else {
      if (delta_rms < -1.0) {
        delta_rms = -1.0;
      }
    }
    float prob_onset = delta_rms;
    float prob_offset = -prob_onset;
    if (prob_onset > 1.0) {
      prob_onset = 1.0;
    } else {
      if (prob_onset < 0.0) {
        prob_onset = 0.0;
      }
    }
    if (prob_offset > 1.0) {
      prob_offset = 1.0;
    } else {
      if (prob_offset < 0.0) {
        prob_offset = 0.0;
      }
    }
    voice_onset_prob_[frame] = prob_onset;
    voice_offset_prob_[frame] = prob_offset;
  }
  // Just set the onset and offset probs to zero in the end zones.
  for (int32_t frame = 0; frame < frame_offset; ++frame) {
    int32_t bframe = n_feature_frames_ - 1 - frame;
    voice_onset_prob_[frame] = voice_offset_prob_[frame] = 0.0;
    voice_onset_prob_[bframe] = voice_offset_prob_[bframe] = 0.0;
  }
}


void EpochTracker::GetRmsVoicingModulator(void) {
  float min_val = bandpassed_rms_[0];
  float max_val = min_val;

  prob_voiced_.resize(bandpassed_rms_.size());
  // Find the max and min over the whole RMS array.  Scale and offset
  // the RMS values to all fall in th range of 0.0 to 1.0.
  for (size_t i = 1; i < bandpassed_rms_.size(); ++i) {
    float val = bandpassed_rms_[i];
    if (val < min_val) {
      min_val = val;
    } else {
      if (val > max_val) {
        max_val = val;
      }
    }
  }
  if (min_val < min_rms_db_) {
    min_val = min_rms_db_;
  }
  float range = max_val - min_val;
  if (range < 1.0) {
    range = 1.0;
  }
  for (size_t i = 0; i < bandpassed_rms_.size(); ++i) {
    prob_voiced_[i] = (bandpassed_rms_[i] - min_val) / range;
    if (prob_voiced_[i] < 0.0) {
      prob_voiced_[i] = 0.0;
    }
  }
}


int32_t EpochTracker::FindNccfPeaks(const std::vector<float>& input, float thresh,
                                    std::vector<int16_t>* output) {
  int32_t limit = input.size() - 1;
  uint32_t n_peaks = 0;
  float max_val = 0.0;
  int16_t max_index = 1;
  int16_t max_out_index = 0;
  output->resize(0);
  for (int16_t i = 1; i < limit; ++i) {
    float val = input[i];
    if ((val > thresh) && (val > input[i-1]) && (val >= input[i+1])) {
      if (val > max_val) {
        max_val = val;
        max_out_index = n_peaks;
        max_index = i;
      }
      n_peaks++;
      output->push_back(i);
    }
  }
  //  Be sure the highest peak is the first one in the array.
  if ((n_peaks > 1) && (max_out_index > 0)) {
    int16_t hold = (*output)[0];
    (*output)[0] = (*output)[max_out_index];
    (*output)[max_out_index] = hold;
  } else {
    if (n_peaks <= 0) {
      n_peaks = 1;
      output->push_back(max_index);
    }
  }
  return n_peaks;
}


void EpochTracker::CrossCorrelation(const std::vector<float>& data, int32_t start,
                                    int32_t first_lag, int32_t n_lags,
                                    int32_t size, std::vector<float>* corr) {
  const float* input = (&(data.front())) + start;
  corr->resize(n_lags);
  float energy = 0.0;  // Zero-lag energy part of the normalizer.
  for (int32_t i = 0; i < size; ++i) {
    energy += input[i] * input[i];
  }
  if (energy == 0.0) {  // Bail out if no energy is found.
    for (int32_t i = 0; i < n_lags; ++i) {
      (*corr)[i] = 0.0;
    }
    return;
  }
  int32_t limit = first_lag + size;
  double lag_energy = 0.0;  // Energy at the period hypothesis lag.
  for (int32_t i = first_lag; i < limit; ++i) {
    lag_energy += input[i] * input[i];
  }
  int32_t last_lag = first_lag + n_lags;
  int32_t oind = 0;  // Index for storing output values.
  for (int32_t lag = first_lag; lag < last_lag; ++lag, ++oind) {
    float sum = 0.0;
    int32_t lag_ind = lag;
    for (int32_t i = 0; i < size; ++i, ++lag_ind) {
      sum += input[i] * input[lag_ind];
    }
    if (lag_energy <= 0.0)
      lag_energy = 1.0;
    (*corr)[oind] = sum / sqrt(energy * lag_energy);
    lag_energy -= input[lag] * input[lag];  // Discard old sample.
    lag_energy += input[lag_ind] * input[lag_ind];  // Pick up the new sample.
  }
  return;
}


void EpochTracker::GetPulseCorrelations(float window_dur, float peak_thresh) {
  first_nccf_lag_ = RoundUp(sample_rate_ / max_f0_search_);
  int32_t max_lag = RoundUp(sample_rate_ / min_f0_search_);
  n_nccf_lags_ = max_lag - first_nccf_lag_;
  int32_t window_size = RoundUp(window_dur * sample_rate_);
  int32_t half_wind = window_size / 2;
  int32_t frame_size = window_size + max_lag;

  std::vector<float> mixture;
  mixture.resize(residual_.size());
  const float kMinCorrelationStep = 0.001;  // Pulse separation
  // before computing new
  // correlation values.
  const float kResidFract = 0.7;  // Fraction of the residual to use.
  const float kPcmFract = 1.0 - kResidFract;  // Fraction of the input to use.
  for (size_t i = 0; i < residual_.size(); ++i) {
    mixture[i] = (kResidFract * residual_[i]) + (kPcmFract * signal_[i]);
  }

  int32_t min_step = RoundUp(sample_rate_ * kMinCorrelationStep);
  int32_t old_start = - (2.0 * min_step);
  for (size_t peak = 0; peak < resid_peaks_.size(); ++peak) {
    int32_t start = resid_peaks_[peak].resid_index - half_wind;
    if (start < 0) {
      start = 0;
    }
    size_t end = start + frame_size;
    if ((end >= mixture.size()) || ((start - old_start) < min_step)) {
      resid_peaks_[peak].nccf = resid_peaks_[peak - 1].nccf;
      resid_peaks_[peak].nccf_periods = resid_peaks_[peak - 1].nccf_periods;
    } else {
      CrossCorrelation(mixture, start, first_nccf_lag_, n_nccf_lags_,
                       window_size, &(resid_peaks_[peak].nccf));
      FindNccfPeaks(resid_peaks_[peak].nccf, peak_thresh,
                    &(resid_peaks_[peak].nccf_periods));
      // Turn the peak indices from FindNccfPeaks into NCCF period hyps.
      for (size_t i = 0; i < resid_peaks_[peak].nccf_periods.size(); ++i) {
        resid_peaks_[peak].nccf_periods[i] += first_nccf_lag_;
      }
      old_start = start;
    }
  }
}


void EpochTracker::Window(const std::vector<float>& input, int32_t offset, size_t size,
                          float* output) {
  if (size != window_.size()) {
    window_.resize(size);
    float arg = 2.0 * M_PI / size;
    for (size_t i = 0; i < size; ++i) {
      window_[i] = 0.5 - (0.5 * cos((i + 0.5) * arg));
    }
  }
  const float* data = (&(input.front())) + offset;
  for (size_t i = 0; i < size; ++i) {
    output[i] = data[i] * window_[i];
  }
}


bool EpochTracker::GetBandpassedRmsSignal(const std::vector<float>& input,
                                          float sample_rate,
                                          float low_limit, float high_limit,
                                          float frame_interval,
                                          float frame_dur,
                                          std::vector<float>* output_rms) {
  size_t frame_step = RoundUp(sample_rate * frame_interval);
  size_t frame_size = RoundUp(sample_rate * frame_dur);
  size_t n_frames = 1 + ((input.size() - frame_size) / frame_step);
  if (n_frames < 2) {
    fprintf(stderr, "input too small (%d) in GetBandpassedRmsSignal\n",
            static_cast<int>(input.size()));
    output_rms->resize(0);
    return false;
  }
  output_rms->resize(n_frames);
  FFT ft(FFT::fft_pow2_from_window_size(frame_size));
  int32_t fft_size = ft.get_fftSize();
  int32_t first_bin = RoundUp(fft_size * low_limit / sample_rate);
  int32_t last_bin = RoundUp(fft_size * high_limit / sample_rate);
  float* re = new float[fft_size];
  float* im = new float[fft_size];
  size_t first_frame = frame_size / (2 * frame_step);
  if ((first_frame * 2 * frame_step) < frame_size) {
    first_frame++;
  }
  for (size_t frame = first_frame; frame < n_frames; ++frame) {
    Window(input, (frame - first_frame) * frame_step, frame_size, re);
    for (size_t i = 0; i < frame_size; ++i) {
      im[i] = 0.0;
    }
    for (int32_t i = frame_size; i < fft_size; ++i) {
      re[i] = im[i] = 0.0;
    }
    ft.fft(re, im);
    float rms = 20.0 *
        log10(1.0 + ft.get_band_rms(re, im, first_bin, last_bin));
    (*output_rms)[frame] = rms;
    if (frame == first_frame) {
      for (size_t bframe = 0; bframe < first_frame; ++bframe) {
        (*output_rms)[bframe] = rms;
      }
    }
  }
  delete [] re;
  delete [] im;
  return true;
}


void EpochTracker::GetSymmetryStats(const std::vector<float>& data, float* pos_rms,
                                    float* neg_rms, float* mean) {
  int32_t n_input = data.size();
  double p_sum = 0.0;
  double n_sum = 0.0;
  double sum = 0.0;
  int32_t n_p = 0;
  int32_t n_n = 0;
  for (int32_t i = 0; i < n_input; ++i) {
    sum += data[i];
  }
  *mean = sum / n_input;
  for (int32_t i = 0; i < n_input; ++i) {
    double val = data[i] - *mean;
    if (val > 0.0) {
      p_sum += (val * val);
      n_p++;
    } else {
      if (val < 0.0) {
        n_sum += (val * val);
        n_n++;
      }
    }
  }
  *pos_rms = sqrt(p_sum / n_p);
  *neg_rms = sqrt(n_sum / n_n);
}


void EpochTracker::NormalizeAmplitude(const std::vector<float>& input,
                                      float sample_rate,
                                      std::vector<float>* output) {
  int32_t n_input = input.size();
  int32_t ref_size = RoundUp(sample_rate * ref_dur_);
  std::vector<float> wind;

  output->resize(n_input);
  // Just calling Window here to create a Hann window in window_.
  Window(input, 0, ref_size, &(output->front()));
  int32_t ref_by_2 = ref_size / 2;
  int32_t frame_step = RoundUp(sample_rate * internal_frame_interval_);
  int32_t limit = n_input - ref_size;
  int32_t frame_limit = ref_by_2;
  int32_t data_p = 0;
  int32_t frame_p = 0;
  double old_inv_rms = 0.0;
  while (frame_p < limit) {
    double ref_energy = 1.0;  // to prevent divz
    for (int32_t i = 0; i < ref_size; ++i) {
      double val = window_[i] * input[i + frame_p];
      ref_energy += (val * val);
    }
    double inv_rms = sqrt(static_cast<double>(ref_size) / ref_energy);
    double delta_inv_rms = 0.0;
    if (frame_p > 0) {
      delta_inv_rms = (inv_rms - old_inv_rms) / frame_step;
    } else {
      old_inv_rms = inv_rms;
    }
    for (int i = 0; i < frame_limit; ++i, ++data_p) {
      (*output)[data_p] = input[data_p] * old_inv_rms;
      old_inv_rms += delta_inv_rms;
    }
    frame_limit = frame_step;
    frame_p += frame_step;
  }
  for ( ; data_p < n_input; ++data_p) {
    (*output)[data_p] = input[data_p] * old_inv_rms;
  }
}

bool EpochTracker::ComputePolarity(int *polarity) {
  if (sample_rate_ <= 0.0) {
    fprintf(stderr, "EpochTracker not initialized in ComputeFeatures\n");
    return false;
  }
  if (!GetBandpassedRmsSignal(signal_, sample_rate_, min_freq_for_rms_,
                              max_freq_for_rms_, internal_frame_interval_,
                              rms_window_dur_, &bandpassed_rms_)) {
    fprintf(stderr, "Failure in GetBandpassedRmsSignal\n");
    return false;
  }
  if (!GetLpcResidual(signal_, sample_rate_, &residual_)) {
    fprintf(stderr, "Failure in GetLpcResidual\n");
    return false;
  }
  float mean = 0.0;
  GetSymmetryStats(residual_, &positive_rms_, &negative_rms_, &mean);
  *polarity = -1;
  if (positive_rms_ > negative_rms_) {
    *polarity = 1;
  }
  return true;
}

bool EpochTracker::ComputeFeatures(void) {
  if (sample_rate_ <= 0.0) {
    fprintf(stderr, "EpochTracker not initialized in ComputeFeatures\n");
    return false;
  }
  if (!GetBandpassedRmsSignal(signal_, sample_rate_, min_freq_for_rms_,
                              max_freq_for_rms_, internal_frame_interval_,
                              rms_window_dur_, &bandpassed_rms_)) {
    fprintf(stderr, "Failure in GetBandpassedRmsSignal\n");
    return false;
  }
  if (!GetLpcResidual(signal_, sample_rate_, &residual_)) {
    fprintf(stderr, "Failure in GetLpcResidual\n");
    return false;
  }
  n_feature_frames_ = bandpassed_rms_.size();
  float mean = 0.0;
  GetSymmetryStats(residual_, &positive_rms_, &negative_rms_, &mean);
  fprintf(stdout, "Residual symmetry: P:%f  N:%f  MEAN:%f\n",
	  positive_rms_, negative_rms_, mean);
  if (positive_rms_ > negative_rms_) {
    fprintf(stdout, "Inverting signal\n");
    for (size_t i = 0; i < residual_.size(); ++i) {
      residual_[i] = -residual_[i];
      signal_[i] = -signal_[i];
    }
  }
  NormalizeAmplitude(residual_, sample_rate_, &norm_residual_);
  GetResidualPulses();
  GetPulseCorrelations(correlation_dur_, correlation_thresh_);
  GetVoiceTransitionFeatures();
  GetRmsVoicingModulator();
  return true;
}


bool EpochTracker::TrackEpochs(void) {
  CreatePeriodLattice();
  DoDynamicProgramming();
  return BacktrackAndSaveOutput();
}


void EpochTracker::CreatePeriodLattice(void) {
  int32_t low_period = RoundUp(sample_rate_ / max_f0_search_);
  int32_t high_period = RoundUp(sample_rate_ / min_f0_search_);
  int32_t total_cands = 0;

  //  For each pulse in the normalized residual...
  for (size_t peak = 0; peak < resid_peaks_.size(); ++peak) {
    size_t frame_index = resid_peaks_[peak].frame_index;
    size_t resid_index = resid_peaks_[peak].resid_index;
    int32_t min_period = resid_index + low_period;
    int32_t max_period = resid_index + high_period;
    float lowest_cost = 1.0e30;
    float time = resid_index / sample_rate_;
    int32_t best_nccf_period = resid_peaks_[peak].nccf_periods[0];
    float best_cc_val =
        resid_peaks_[peak].nccf[best_nccf_period - first_nccf_lag_];
    best_corr_.push_back(time);
    best_corr_.push_back(best_cc_val);
    EpochCand* uv_cand = new EpochCand;  // pre-allocate an unvoiced candidate.
    uv_cand->voiced = false;
    uv_cand->start_peak = peak;
    uv_cand->cost_sum = 0.0;
    uv_cand->local_cost = 0.0;
    uv_cand->best_prev_cand = -1;
    int32_t next_cands_created = 0;
    // For each of the next residual pulses in the search range...
    for (size_t npeak = peak + 1; npeak < resid_peaks_.size(); ++npeak) {
      int32_t iperiod = resid_peaks_[npeak].resid_index - resid_index;
      if (resid_peaks_[npeak].resid_index >= min_period) {
        float fperiod = iperiod;
        // Find the NCCF period that most closely matches.
        int32_t cc_peak = 0;
        float min_period_diff = fabs(log(fperiod / best_nccf_period));
        for (size_t cc_peak_ind = 1;
             cc_peak_ind < resid_peaks_[peak].nccf_periods.size();
             ++cc_peak_ind) {
          int32_t nccf_period =  resid_peaks_[peak].nccf_periods[cc_peak_ind];
          float test_diff = fabs(log(fperiod / nccf_period));
          if (test_diff < min_period_diff) {
            min_period_diff = test_diff;
            cc_peak = cc_peak_ind;
          }
        }
        // Generate a forward-period candidate.  Grade the candidate
        // on closeness to a NCCF period hyp, value of the NCCF,
        // values of the candidate endpoint peaks.
        EpochCand* v_cand = new EpochCand;
        v_cand->voiced = true;
        v_cand->period = iperiod;
        int32_t cc_index = iperiod - first_nccf_lag_;
        float cc_value = 0.0;
        // If this period is in the normal search range, retrieve the
        // actual NCCF value for that lag.
        if ((cc_index >= 0) && (cc_index < n_nccf_lags_)) {
          cc_value = resid_peaks_[peak].nccf[cc_index];
        } else {  // punt and use the "closest" nccf peak
          int32_t peak_cc_index = resid_peaks_[peak].nccf_periods[cc_peak] -
              first_nccf_lag_;
          cc_value =  resid_peaks_[peak].nccf[peak_cc_index];
        }
        float per_dev_cost = period_deviation_wt_ * min_period_diff;
        float level_cost = level_wt_ * (1.0 - prob_voiced_[frame_index]);
        float period_cost = fperiod * period_wt_;
        float peak_qual_cost = peak_quality_wt_ /
            (resid_peaks_[npeak].peak_quality + resid_peaks_[peak].peak_quality);
        float local_cost =  (1.0 - cc_value) + per_dev_cost + peak_qual_cost +
            level_cost + period_cost + reward_;
        v_cand->local_cost = local_cost;
        if (local_cost < lowest_cost) {
          lowest_cost = local_cost;
          // Evaluate this best voiced period as an unvoiced
          // hypothesis.  (There are always plenty of poor
          // voiced candidates!)
          uv_cand->period = iperiod;
          level_cost = level_wt_ * prob_voiced_[frame_index];
          uv_cand->local_cost = (nccf_uv_peak_wt_ * cc_value) +
              level_cost + unvoiced_cost_ + reward_;
          uv_cand->end_peak = npeak;
          uv_cand->closest_nccf_period =
              resid_peaks_[peak].nccf_periods[cc_peak];
        }
        v_cand->start_peak = peak;
        v_cand->end_peak = npeak;
        v_cand->closest_nccf_period = resid_peaks_[peak].nccf_periods[cc_peak];
        v_cand->cost_sum = 0.0;
        v_cand->best_prev_cand = -1;
        resid_peaks_[peak].future.push_back(v_cand);
        resid_peaks_[npeak].past.push_back(v_cand);
        total_cands++;
        next_cands_created++;
        if (resid_peaks_[npeak].resid_index >= max_period) {
          break;  // Exit the search only after at least one peak has
          // been found, even if it is necessary to go beyond
          // the nominal maximum period.
        }
      }  // end if this period is >= minimum search period.
    }  // end for each next pulse in the global period-search range.
    // Install the unvoiced candidate for this pulse.
    if (next_cands_created) {  // Register the unvoiced hyp iff there
      // was at least one voiced hyp.
      resid_peaks_[peak].future.push_back(uv_cand);
      resid_peaks_[uv_cand->end_peak].past.push_back(uv_cand);
      total_cands++;
    } else {
      delete uv_cand;
    }
    // Now all residual-pulse period hyps that start at the current
    // pulse have been generated.

    // If this pulse is one of the first few in the residual that had
    // no possible preceeding periods, mark it as an origin.
    if (resid_peaks_[peak].past.size() == 0) {  // Is this pulse an origin?
      for (size_t pp = 0; pp < resid_peaks_[peak].future.size(); ++pp) {
        resid_peaks_[peak].future[pp]->cost_sum =
            resid_peaks_[peak].future[pp]->local_cost;
        resid_peaks_[peak].future[pp]->best_prev_cand = -1;
      }
    } else {  // There are previous period hyps to consider...
      // Check if at least one UV hyp is included in the period hyps
      // that end on this peak.  If there are none, generate one by
      // cloning the best voiced hyp in the collection, but score it
      // as unvoiced.
      int32_t uv_hyps_found = 0;
      float lowest_cost =  resid_peaks_[peak].past[0]->local_cost;
      size_t lowest_index = 0;
      for (size_t pcand = 0; pcand < resid_peaks_[peak].past.size(); ++pcand) {
        if (!resid_peaks_[peak].past[pcand]->voiced) {
          uv_hyps_found++;
        } else {
          if (resid_peaks_[peak].past[pcand]->local_cost < lowest_cost) {
            lowest_index = pcand;
            lowest_cost = resid_peaks_[peak].past[pcand]->local_cost;
          }
        }
      }
      if (!uv_hyps_found) {  // clone an UV hyp from the best V hyp found.
        size_t start_peak = resid_peaks_[peak].past[lowest_index]->start_peak;
        EpochCand* uv_cand = new EpochCand;
        uv_cand->voiced = false;
        uv_cand->start_peak = start_peak;
        uv_cand->end_peak = peak;
        uv_cand->period =  resid_peaks_[peak].past[lowest_index]->period;
        uv_cand->closest_nccf_period =
            resid_peaks_[peak].past[lowest_index]->closest_nccf_period;
        uv_cand->cost_sum = 0.0;
        uv_cand->local_cost = 0.0;
        uv_cand->best_prev_cand = -1;
        float llevel_cost = level_wt_ *
            prob_voiced_[resid_peaks_[start_peak].frame_index];
        int32_t lcc_index = uv_cand->period - first_nccf_lag_;
        float lcc_value = 0.0;
        // If this period is in the normal search range, retrieve the
        // actual NCCF value for that lag.
        if ((lcc_index >= 0) && (lcc_index < n_nccf_lags_)) {
          lcc_value = resid_peaks_[start_peak].nccf[lcc_index];
        } else {
          int32_t peak_cc_index = uv_cand->closest_nccf_period - first_nccf_lag_;
          lcc_value =  resid_peaks_[start_peak].nccf[peak_cc_index];
        }
        uv_cand->local_cost = (nccf_uv_peak_wt_ * lcc_value) + llevel_cost +
            unvoiced_cost_ + reward_;
        resid_peaks_[start_peak].future.push_back(uv_cand);
        resid_peaks_[peak].past.push_back(uv_cand);
        total_cands++;
      }
    }
  }  // end of the first pass at all pulses in the residual.
  // All forward period hypotheses that start on all residual pulses
  // in the signal have now been generated, and both voiced and
  // unvoiced continuity throughout the lattice of hyps have been
  // assured.
}


void EpochTracker::DoDynamicProgramming(void) {
  // Perform the dynamic programming iterations over all pulses in
  // the residual.
  // For each pulse in the residual....
  for (size_t peak = 0; peak < resid_peaks_.size(); ++peak) {
    if (resid_peaks_[peak].past.size() == 0) {  // Is this peak an origin?
      continue;
    }
    // For each forward period hypothesis starting at this pulse...
    for (size_t fhyp = 0; fhyp < resid_peaks_[peak].future.size(); ++fhyp) {
      float min_cost = 1.0e30;  //  huge
      size_t min_index = 0;
      float forward_period =  resid_peaks_[peak].future[fhyp]->period;
      // For each of the previous period hyps ending on this pulse...
      for (size_t phyp = 0; phyp < resid_peaks_[peak].past.size(); ++phyp) {
        float sum_cost = 0.0;
        // There are 4 voicing hyps to consider: V->V  V->UV  UV->V  UV->UV
        if (resid_peaks_[peak].future[fhyp]->voiced &&
            resid_peaks_[peak].past[phyp]->voiced) {  // v->v
          float f_trans_cost = freq_trans_wt_ *
              fabs(log(forward_period / resid_peaks_[peak].past[phyp]->period));
          sum_cost = f_trans_cost + resid_peaks_[peak].past[phyp]->cost_sum;
        } else {
          if (resid_peaks_[peak].future[fhyp]->voiced &&
              !resid_peaks_[peak].past[phyp]->voiced) {  // uv->v
            float v_transition_cost = voice_transition_factor_ *
                (1.0 - voice_onset_prob_[resid_peaks_[peak].frame_index]);
            sum_cost = resid_peaks_[peak].past[phyp]->cost_sum +
                v_transition_cost;
          } else {
            if ((!resid_peaks_[peak].future[fhyp]->voiced) &&
                resid_peaks_[peak].past[phyp]->voiced) {  // v->uv
              float v_transition_cost = voice_transition_factor_ *
                  (1.0 - voice_offset_prob_[resid_peaks_[peak].frame_index]);
              sum_cost = resid_peaks_[peak].past[phyp]->cost_sum +
                  v_transition_cost;
            } else {  //  UV->UV
              sum_cost = resid_peaks_[peak].past[phyp]->cost_sum;
            }
          }
        }
        if (sum_cost < min_cost) {
          min_cost = sum_cost;
          min_index = phyp;
        }
      }  // end for each previous period hyp
      resid_peaks_[peak].future[fhyp]->cost_sum =
          resid_peaks_[peak].future[fhyp]->local_cost + min_cost;
      resid_peaks_[peak].future[fhyp]->best_prev_cand = min_index;
    }  // end for each foreward period hyp
  }  // end for each pulse in the residual signal.
  // Here ends the dynamic programming.
}


bool EpochTracker::BacktrackAndSaveOutput(void) {
  if (resid_peaks_.size() == 0) {
    fprintf(stderr, "Can't backtrack with no residual peaks\n");
    return false;
  }
  //  Now find the best period hypothesis at the end of the signal,
  //  and backtrack from there.
  float min_cost = 1.0e30;
  int32_t min_index = 0;
  // First, find a terminal peak which is the end of more than one
  // period candidate.
  size_t end = 0;
  for (size_t peak = resid_peaks_.size() - 1; peak > 0; --peak) {
    if ((resid_peaks_[peak].past.size() > 1)) {
      for (size_t ind = 0; ind < resid_peaks_[peak].past.size(); ++ind) {
        if (resid_peaks_[peak].past[ind]->cost_sum < min_cost) {
          min_cost = resid_peaks_[peak].past[ind]->cost_sum;
          min_index = ind;
        }
      }
      end = peak;
      break;
    }
  }
  if (end == 0) {
    fprintf(stderr, "No terminal peak found in DynamicProgramming\n");
    return false;
  }
  output_.clear();
  // Backtrack through the best pointers to retrieve the optimum
  // period and voicing candidates.  Save the GCI and voicing
  // estimates.
  while (1) {
    int32_t start_peak = resid_peaks_[end].past[min_index]->start_peak;
    TrackerResults tr;
    tr.resid_index = resid_peaks_[start_peak].resid_index;
    if (resid_peaks_[end].past[min_index]->voiced) {
      float nccf_period =
          resid_peaks_[end].past[min_index]->closest_nccf_period;
      // TODO(dtalkin) If the closest NCCF period is more than epsilon
      // different from the inter-pulse interval, use the inter-pulse
      // interval instead.
      tr.f0 = sample_rate_ / nccf_period;
      tr.voiced = true;
    } else {
      tr.f0 = 0.0;
      tr.voiced = false;
    }
    int32_t cc_index = resid_peaks_[end].past[min_index]->period -
        first_nccf_lag_;
    // If this period is in the normal search range, retrieve the
    // actual NCCF value for that lag.
    if ((cc_index >= 0) && (cc_index < n_nccf_lags_)) {
      tr.nccf_value = resid_peaks_[start_peak].nccf[cc_index];
    } else {
      int32_t peak_cc_index =
          resid_peaks_[end].past[min_index]->closest_nccf_period -
          first_nccf_lag_;
      tr.nccf_value =  resid_peaks_[start_peak].nccf[peak_cc_index];
    }
    output_.push_back(tr);
    size_t new_end =  resid_peaks_[end].past[min_index]->start_peak;
    min_index = resid_peaks_[end].past[min_index]->best_prev_cand;
    if (min_index < 0) {  // Has an origin pulse been reached?
      break;
    }
    end = new_end;
  }
  // NOTE:  The output_ array is in reverse time order!
  return true;
}


void EpochTracker::GetFilledEpochs(float unvoiced_pm_interval,
                                   std::vector<float>* times,
                                   std::vector<int16_t>* voicing) {
  times->clear();
  voicing->clear();
  float final_time = norm_residual_.size() / sample_rate_;
  int32_t limit = output_.size() - 1;
  int32_t i = limit;
  // Produce the output in normal time order.
  while (i >= 0) {
    int32_t i_old = i;
    float time = output_[i].resid_index / sample_rate_;
    // Note that the pulse locations of both the beginning and end
    // of any voiced period are of interest.
    if (output_[i].voiced || ((i < limit) && (output_[i+1].voiced))) {
      times->push_back(time);
      voicing->push_back(1);
      i--;
    }
    if (i == limit) {
      time = 0.0;
    }
    if ((i > 0) && (!output_[i].voiced) && (time < final_time)) {
      for ( ; i > 0; --i) {
        if (output_[i].voiced) {
          break;
        }
      }
      float next_time = final_time;
      int32_t fill_ind = 1;
      if (i > 0) {
        next_time = (output_[i].resid_index / sample_rate_) -
            (1.0 / max_f0_search_);
      }
      float now = time + (fill_ind * unvoiced_pm_interval);
      while (now < next_time) {
        times->push_back(now);
        voicing->push_back(0);
        fill_ind++;
        now = time + (fill_ind * unvoiced_pm_interval);
      }
    }
    if (i == i_old) {
      i--;
    }
  }
}


bool EpochTracker::ResampleAndReturnResults(float resample_interval,
                                            std::vector<float>* f0,
                                            std::vector<float>* correlations) {
  if ((sample_rate_ <= 0.0) || (output_.size() == 0)) {
    fprintf(stderr, 
            "Un-initialized EpochTracker or no output_ in ResampleAndReturnF0\n");
    return false;
  }
  if (resample_interval <= 0.0) {
    fprintf(stderr, "resample_interval <= 0.0 in ResampleAndReturnF0\n");
    return false;
  }
  float last_time = (output_[0].resid_index / sample_rate_) + endpoint_padding_;
  int32_t n_frames = RoundUp(last_time / resample_interval);
  f0->resize(0);
  correlations->resize(0);
  f0->insert(f0->begin(), n_frames, 0.0);
  correlations->insert(correlations->begin(), n_frames, 0.0);
  int32_t limit = output_.size() - 1;
  int32_t prev_frame = 0;
  float prev_f0 = output_[limit].f0;
  float prev_corr = output_[limit].nccf_value;
  for (int32_t i = limit; i >= 0; --i) {
    int32_t frame = RoundUp(output_[i].resid_index /
                            (sample_rate_ * resample_interval));
    (*f0)[frame] = output_[i].f0;
    (*correlations)[frame] = output_[i].nccf_value;
    if ((frame - prev_frame) > 1) {
      for (int32_t fr = prev_frame + 1; fr < frame; ++fr) {
        (*f0)[fr] = prev_f0;
        (*correlations)[fr] = prev_corr;
      }
    }
    prev_frame = frame;
    prev_corr = output_[i].nccf_value;
    prev_f0 = output_[i].f0;
  }
  for (int32_t frame = prev_frame; frame < n_frames; ++frame) {
    (*f0)[frame] = prev_f0;
    (*correlations)[frame] = prev_corr;
  }
  return true;
}


bool EpochTracker::WriteDebugData(const std::vector<float>& data,
                                  const std::string& extension) {
  if (debug_name_.empty()) {
    return true;
  }
  std::string filename = debug_name_ + "." + extension;
  if (data.size() == 0) {
    fprintf(stdout, "Data size==0 for %s in WriteDebugData\n",
               filename.c_str());
    return false;
  }
  FILE* out = fopen(filename.c_str(), "w");
  if (!out) {
    fprintf(stderr, "Can't open %s for debug output\n", filename.c_str());
    return false;
  }
  size_t  written = fwrite(&(data.front()), sizeof(data.front()),
                           data.size(), out);
  fclose(out);
  if (written != data.size()) {
    fprintf(stderr, "Problems writing debug data (%d %d)\n",
            static_cast<int>(written), static_cast<int>(data.size()));
    return false;
  }
  return true;
}

bool EpochTracker::WriteDiagnostics(const std::string& file_base) {
  if (!file_base.empty()) {
    set_debug_name(file_base);
  }
  WriteDebugData(signal_, "pcm");
  WriteDebugData(residual_, "resid");
  WriteDebugData(norm_residual_, "nresid");
  WriteDebugData(bandpassed_rms_, "bprms");
  WriteDebugData(voice_onset_prob_, "onsetp");
  WriteDebugData(voice_offset_prob_, "offsetp");
  WriteDebugData(peaks_debug_, "pvals");
  WriteDebugData(prob_voiced_, "pvoiced");
  // best_corr_ is only available after CreatePeriodLattice.
  WriteDebugData(best_corr_, "bestcorr");
  // NOTE: if WriteDiagnostics is called before the
  // DynamicProgramming, there will be nothing in output_.
  if ((!debug_name_.empty()) && (output_.size() > 2)) {
    std::string pm_name = debug_name_ + ".pmlab";
    FILE* pmfile = fopen(pm_name.c_str(), "w");
    fprintf(pmfile, "#\n");
    std::vector<float> f0;
    int32_t limit = output_.size() - 1;
    // Produce debug output in normal time order.
    for (int32_t i = limit; i >= 0; --i) {
      float time = output_[i].resid_index / sample_rate_;
      // Note that the pulse locations of both the beginning and end
      // of any voiced period are of interest.
      if (output_[i].voiced || ((i < limit) && (output_[i+1].voiced))) {
        fprintf(pmfile, "%f blue \n", time);
      } else {
        fprintf(pmfile, "%f red \n", time);
      }
      f0.push_back(time);
      f0.push_back(output_[i].f0);
      f0.push_back(output_[i].nccf_value);
    }
    fclose(pmfile);
    WriteDebugData(f0, "f0ap");
  }
  return true;
}