Spaces:
Sleeping
Sleeping
File size: 45,184 Bytes
9f5b176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 |
/*
Copyright 2015 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Author: [email protected] (David Talkin)
// Implementation of the EpochTracker class. This does all of the
// processing necessary to estimate the F0, voicing state and epochs
// (glottal-closure instants) in human speech signals. See
// epoch_tracker.h for details.
#include "epoch_tracker/epoch_tracker.h"
#include <string>
#include <vector>
#include "epoch_tracker/fd_filter.h"
#include "epoch_tracker/lpc_analyzer.h"
#include "epoch_tracker/fft.h"
const int kMinSampleRate = 6000;
EpochTracker::EpochTracker(void) : sample_rate_(-1.0) {
SetParameters();
}
EpochTracker::~EpochTracker(void) {
CleanUp();
}
static inline int32_t RoundUp(float val) {
return static_cast<int32_t>(val + 0.5);
}
void EpochTracker::CleanUp(void) {
for (size_t i = 0; i < resid_peaks_.size(); ++i) {
for (size_t j = 0; j < resid_peaks_[i].future.size(); ++j) {
delete resid_peaks_[i].future[j];
}
}
resid_peaks_.clear();
output_.clear();
best_corr_.clear();
}
void EpochTracker::SetParameters(void) {
// Externally-settable control parameters:
// Period for the returned F0 signal.
external_frame_interval_ = kExternalFrameInterval;
do_highpass_ = kDoHighpass; // Enables highpassing of input signal.
// Enables Hilbert transformation of the input data.
do_hilbert_transform_ = kDoHilbertTransform;
max_f0_search_ = kMaxF0Search; // Maximum F0 to search for.
min_f0_search_ = kMinF0Search; // Minimum F0 to search for.
// Pulse spacing to use in unvoiced regions of the returned epoch signal.
unvoiced_pulse_interval_ = kUnvoicedPulseInterval;
debug_name_ = kDebugName; // base path for all debugging signals.
// Internal feature-computation parameters:
// For internal feature computations
internal_frame_interval_ = kInternalFrameInterval;
// for the high-pass filter
corner_frequency_ = 80.0;
filter_duration_ = 0.05;
// for the LPC inverse filter.
frame_duration_ = 0.02; // window size (sec)
lpc_frame_interval_ = 0.01; // (sec)
preemphasis_ = 0.98; // preemphasis for LPC analysis
noise_floor_ = 70.0; // SNR in dB simulated during LPC analysis.
// for computing LPC residual peak quality.
peak_delay_ = 0.0004; // for measuring prominence
skew_delay_ = 0.00015; // for measuring shape
peak_val_wt_ = 0.1;
peak_prominence_wt_ = 0.3;
peak_skew_wt_ = 0.1;
peak_quality_floor_ = 0.01;
// for computing voice-transition pseudo-probabilities
time_span_ = 0.020; // the interval (sec) centered on the
// measurement point, used to compute parameter
// deltas.
level_change_den_ = 30.0; // max. dB level change expected over
// time_span_ for bandpassed RMS for
// computing pseudo-probability of
// voicing.
min_rms_db_ = 20.0; // level floor in dB
// window size for computing amplitude-normalizing RMS
ref_dur_ = 0.02;
// low and high frequency limits for bandpassed RMS used in voicing indicator
min_freq_for_rms_ = 100.0;
max_freq_for_rms_ = 1000.0;
// duration of integrator for bandpassed RMS
rms_window_dur_ = 0.025;
// window duration, in seconds, for NCCF computations
correlation_dur_ = 0.0075;
// ignore any NCCF peaks less than this
correlation_thresh_ = 0.2;
// Parametrs used by the dynamic-programming tracker:
// reward for inserting another period
reward_ = -1.5;
// weight given to deviation of inter-pulse interval from the
// closest NCCF peak lag
period_deviation_wt_ = 1.0;
// weight given to the quality of the residual peak
peak_quality_wt_ = 1.3;
// cost of the unvoiced hypothesis
unvoiced_cost_ = kUnvoicedCost;
// cost of high NCCF values in hypothetical unvoiced regions
nccf_uv_peak_wt_ = 0.9;
// weight given to period length
period_wt_ = 0.0002;
// weight given to the pseudo-probability of voicing feature
level_wt_ = 0.8;
// weight given to period-length differences between adjacent periods.
freq_trans_wt_ = 1.8;
// cost of switching between voicing states; modulated by voicing
// onset/offset probs.
voice_transition_factor_ = 1.4;
// Parameters used to generate final outputs:
// pad time in seconds to add to the last measured period during
// output of periodically-resampled data
endpoint_padding_ = 0.01;
}
bool EpochTracker::Init(const int16_t* input, int32_t n_input, float sample_rate,
float min_f0_search, float max_f0_search,
bool do_highpass, bool do_hilbert_transform) {
if (input && (sample_rate > 6000.0) && (n_input > (sample_rate * 0.05)) &&
(min_f0_search < max_f0_search) && (min_f0_search > 0.0)) {
CleanUp();
min_f0_search_ = min_f0_search;
max_f0_search_ = max_f0_search;
sample_rate_ = sample_rate;
int16_t* input_p = const_cast<int16_t *>(input);
if (do_highpass) {
input_p = HighpassFilter(input_p, n_input, sample_rate,
corner_frequency_, filter_duration_);
}
signal_.resize(n_input);
if (do_hilbert_transform) {
HilbertTransform(input_p, n_input, &(signal_.front()));
} else {
for (int32_t i = 0; i < n_input; ++i) {
signal_[i] = input_p[i];
}
}
if (input_p != input) {
delete [] input_p;
}
return true;
}
return false;
}
void EpochTracker::HilbertTransform(int16_t* input, int32_t n_input,
float* output) {
FFT ft = FFT(FFT::fft_pow2_from_window_size(n_input));
int32_t n_fft = ft.get_fftSize();
float* re = new float[n_fft];
float* im = new float[n_fft];
for (int i = 0; i < n_input; ++i) {
re[i] = input[i];
im[i] = 0.0;
}
for (int i = n_input; i < n_fft; ++i) {
re[i] = 0.0;
im[i] = 0.0;
}
ft.fft(re, im);
for (int i = 1; i < n_fft/2; ++i) {
float tmp = im[i];
im[i] = -re[i];
re[i] = tmp;
}
re[0] = im[0] = 0.0;
for (int i = n_fft/2 + 1; i < n_fft; ++i) {
float tmp = im[i];
im[i] = re[i];
re[i] = -tmp;
}
ft.ifft(re, im);
for (int i = 0; i < n_input; ++i) {
output[i] = re[i] / n_fft;
}
delete [] re;
delete [] im;
}
int16_t* EpochTracker::HighpassFilter(int16_t* input, int32_t n_input,
float sample_rate, float corner_freq,
float fir_duration) {
FdFilter filter(sample_rate, corner_freq, true, fir_duration, false);
int16_t* filtered_data = new int16_t[n_input];
int32_t max_buffer_size = filter.GetMaxInputSize();
int32_t to_process = n_input;
bool start = true;
bool end = false;
int32_t input_index = 0;
int32_t output_index = 0;
while (to_process > 0) {
int32_t to_send = to_process;
if (to_send > max_buffer_size) {
to_send = max_buffer_size;
} else {
end = true;
}
int32_t samples_returned = filter.FilterArray(input + input_index, to_send,
start, end,
filtered_data + output_index,
n_input - output_index);
input_index += to_send;
to_process -= to_send;
output_index += samples_returned;
start = false;
}
return filtered_data;
}
static float LpcDcGain(float* lpc, int32_t order) {
float sum = 0.0;
for (int32_t i = 0; i <= order; ++i) {
sum += lpc[i];
}
if (sum > 0.0) {
return sum;
} else {
return 1.0;
}
}
static void MakeDeltas(float* now, float* next, int32_t size, int32_t n_steps,
float* deltas) {
for (int32_t i = 0; i < size; ++i) {
deltas[i] = (next[i] - now[i]) / n_steps;
}
}
bool EpochTracker::GetLpcResidual(const std::vector<float>& input, float sample_rate,
std::vector<float>* output) {
int32_t n_input = input.size();
if (!((n_input > 0) && (sample_rate > 0.0) && output)) {
return false;
}
output->resize(n_input);
int32_t frame_step = RoundUp(sample_rate * lpc_frame_interval_);
int32_t frame_size = RoundUp(sample_rate * frame_duration_);
int32_t n_frames = 1 + ((n_input - frame_size) / frame_step);
int32_t n_analyzed = ((n_frames - 1) * frame_step) + frame_size;
// Must have one more than frame size to do a complete frame.
if (n_analyzed <= n_input) {
n_frames--;
if (n_frames <= 0) {
return false;
}
}
LpcAnalyzer lp;
int32_t order = lp.GetLpcOrder(sample_rate);
float* lpc = new float[order + 1];
float* old_lpc = new float[order + 1];
float* delta_lpc = new float[order + 1];
float norm_error = 0.0;
float preemp_rms = 0.0;
#define RELEASE_MEMORY() { \
delete [] lpc; \
delete [] old_lpc; \
delete [] delta_lpc; \
}
if (!lp.ComputeLpc(order, noise_floor_, frame_size, &(input.front()),
old_lpc, NULL, NULL, &norm_error, &preemp_rms,
preemphasis_)) {
RELEASE_MEMORY();
return false;
}
for (int32_t i = 0; i <= order; ++i) {
delta_lpc[i] = 0.0;
(*output)[i] = 0.0;
}
float old_gain = LpcDcGain(old_lpc, order);
float new_gain = 1.0;
int32_t n_to_filter = (frame_size / 2) - order; // How many samples
// to process before
// computing the next
// LPC frame.
int32_t input_p = 0; // Where to get the next frame for LPC analysis
int32_t output_p = order; // where to store output samples.
int32_t proc_p = 0; // Where to pick up samples for input to the filter
// Main processing loop:
// Compute a new frame of LPC
// Compute the DC gain for the new LPC
// Compute delta DC gain.
// Compute the LPC deltas.
// For each point in the frame:
// Use old_lpc to produce an output point.
// Update the old LPCs and the DC gain
// As soon as the center of the current frame is reached, compute
// the LPC for the next frame.
for ( ; n_frames > 0; --n_frames, input_p += frame_step,
n_to_filter = frame_step) {
if (!lp.ComputeLpc(order, noise_floor_, frame_size,
(&(input.front())) + input_p, lpc, NULL, NULL,
&norm_error, &preemp_rms, preemphasis_)) {
RELEASE_MEMORY();
return false;
}
new_gain = LpcDcGain(lpc, order);
float delta_gain = (new_gain - old_gain) / n_to_filter;
MakeDeltas(old_lpc, lpc, order+1, n_to_filter, delta_lpc);
for (int32_t sample = 0; sample < n_to_filter; ++sample, ++proc_p,
++output_p) {
float sum = 0.0;
int32_t mem = proc_p;
for (int32_t k = order; k > 0; --k, ++mem) {
sum += (old_lpc[k] * input[mem]);
old_lpc[k] += delta_lpc[k];
}
sum += input[mem]; // lpc[0] is always 1.0
(*output)[output_p] = sum / old_gain;
old_gain += delta_gain;
}
}
RELEASE_MEMORY();
return true;
}
// Note that GetResidualPulses assumes the LPC residual is in the
// "correct" polarity, with the GCI pulses of interest being negative
// pulses with a gradual fall and an abrupt rise.
void EpochTracker::GetResidualPulses(void) {
int32_t peak_ind = RoundUp(peak_delay_ * sample_rate_);
int32_t skew_ind = RoundUp(skew_delay_ * sample_rate_);
float min_peak = -1.0; // minimum value that will be considered as a peak
int32_t limit = norm_residual_.size() - peak_ind;
resid_peaks_.resize(0);
peaks_debug_.resize(residual_.size());
for (size_t i = 0; i < peaks_debug_.size(); ++i) {
peaks_debug_[i] = 0.0;
}
for (int32_t i = peak_ind; i < limit; ++i) {
float val = norm_residual_[i];
if (val > min_peak) {
continue;
}
if ((norm_residual_[i-1] > val) && (val <= norm_residual_[i+1])) {
float vm_peak = norm_residual_[i - peak_ind];
float vp_peak = norm_residual_[i + peak_ind];
if ((vm_peak < val) || (vp_peak < val)) {
continue;
}
float vm_skew = norm_residual_[i - skew_ind];
float vp_skew = norm_residual_[i + skew_ind];
float sharp = (0.5 * (vp_peak + vm_peak)) - val;
float skew = -(vm_skew - vp_skew);
ResidPeak p;
p.resid_index = i;
float time = static_cast<float>(i) / sample_rate_;
p.frame_index = RoundUp(time / internal_frame_interval_);
if (p.frame_index >= n_feature_frames_) {
p.frame_index = n_feature_frames_ - 1;
}
p.peak_quality = (-val * peak_val_wt_) + (skew * peak_skew_wt_) +
(sharp * peak_prominence_wt_);
if (p.peak_quality < peak_quality_floor_) {
p.peak_quality = peak_quality_floor_;
}
resid_peaks_.push_back(p);
peaks_debug_[i] = p.peak_quality;
}
}
}
void EpochTracker::GetVoiceTransitionFeatures(void) {
int32_t frame_offset = RoundUp(0.5 * time_span_ / internal_frame_interval_);
if (frame_offset <= 0) {
frame_offset = 1;
}
voice_onset_prob_.resize(n_feature_frames_);
voice_offset_prob_.resize(n_feature_frames_);
int32_t limit = n_feature_frames_ - frame_offset;
for (int32_t frame = frame_offset; frame < limit; ++frame) {
float delta_rms = (bandpassed_rms_[frame + frame_offset] -
bandpassed_rms_[frame - frame_offset]) / level_change_den_;
if (delta_rms > 1.0) {
delta_rms = 1.0;
} else {
if (delta_rms < -1.0) {
delta_rms = -1.0;
}
}
float prob_onset = delta_rms;
float prob_offset = -prob_onset;
if (prob_onset > 1.0) {
prob_onset = 1.0;
} else {
if (prob_onset < 0.0) {
prob_onset = 0.0;
}
}
if (prob_offset > 1.0) {
prob_offset = 1.0;
} else {
if (prob_offset < 0.0) {
prob_offset = 0.0;
}
}
voice_onset_prob_[frame] = prob_onset;
voice_offset_prob_[frame] = prob_offset;
}
// Just set the onset and offset probs to zero in the end zones.
for (int32_t frame = 0; frame < frame_offset; ++frame) {
int32_t bframe = n_feature_frames_ - 1 - frame;
voice_onset_prob_[frame] = voice_offset_prob_[frame] = 0.0;
voice_onset_prob_[bframe] = voice_offset_prob_[bframe] = 0.0;
}
}
void EpochTracker::GetRmsVoicingModulator(void) {
float min_val = bandpassed_rms_[0];
float max_val = min_val;
prob_voiced_.resize(bandpassed_rms_.size());
// Find the max and min over the whole RMS array. Scale and offset
// the RMS values to all fall in th range of 0.0 to 1.0.
for (size_t i = 1; i < bandpassed_rms_.size(); ++i) {
float val = bandpassed_rms_[i];
if (val < min_val) {
min_val = val;
} else {
if (val > max_val) {
max_val = val;
}
}
}
if (min_val < min_rms_db_) {
min_val = min_rms_db_;
}
float range = max_val - min_val;
if (range < 1.0) {
range = 1.0;
}
for (size_t i = 0; i < bandpassed_rms_.size(); ++i) {
prob_voiced_[i] = (bandpassed_rms_[i] - min_val) / range;
if (prob_voiced_[i] < 0.0) {
prob_voiced_[i] = 0.0;
}
}
}
int32_t EpochTracker::FindNccfPeaks(const std::vector<float>& input, float thresh,
std::vector<int16_t>* output) {
int32_t limit = input.size() - 1;
uint32_t n_peaks = 0;
float max_val = 0.0;
int16_t max_index = 1;
int16_t max_out_index = 0;
output->resize(0);
for (int16_t i = 1; i < limit; ++i) {
float val = input[i];
if ((val > thresh) && (val > input[i-1]) && (val >= input[i+1])) {
if (val > max_val) {
max_val = val;
max_out_index = n_peaks;
max_index = i;
}
n_peaks++;
output->push_back(i);
}
}
// Be sure the highest peak is the first one in the array.
if ((n_peaks > 1) && (max_out_index > 0)) {
int16_t hold = (*output)[0];
(*output)[0] = (*output)[max_out_index];
(*output)[max_out_index] = hold;
} else {
if (n_peaks <= 0) {
n_peaks = 1;
output->push_back(max_index);
}
}
return n_peaks;
}
void EpochTracker::CrossCorrelation(const std::vector<float>& data, int32_t start,
int32_t first_lag, int32_t n_lags,
int32_t size, std::vector<float>* corr) {
const float* input = (&(data.front())) + start;
corr->resize(n_lags);
float energy = 0.0; // Zero-lag energy part of the normalizer.
for (int32_t i = 0; i < size; ++i) {
energy += input[i] * input[i];
}
if (energy == 0.0) { // Bail out if no energy is found.
for (int32_t i = 0; i < n_lags; ++i) {
(*corr)[i] = 0.0;
}
return;
}
int32_t limit = first_lag + size;
double lag_energy = 0.0; // Energy at the period hypothesis lag.
for (int32_t i = first_lag; i < limit; ++i) {
lag_energy += input[i] * input[i];
}
int32_t last_lag = first_lag + n_lags;
int32_t oind = 0; // Index for storing output values.
for (int32_t lag = first_lag; lag < last_lag; ++lag, ++oind) {
float sum = 0.0;
int32_t lag_ind = lag;
for (int32_t i = 0; i < size; ++i, ++lag_ind) {
sum += input[i] * input[lag_ind];
}
if (lag_energy <= 0.0)
lag_energy = 1.0;
(*corr)[oind] = sum / sqrt(energy * lag_energy);
lag_energy -= input[lag] * input[lag]; // Discard old sample.
lag_energy += input[lag_ind] * input[lag_ind]; // Pick up the new sample.
}
return;
}
void EpochTracker::GetPulseCorrelations(float window_dur, float peak_thresh) {
first_nccf_lag_ = RoundUp(sample_rate_ / max_f0_search_);
int32_t max_lag = RoundUp(sample_rate_ / min_f0_search_);
n_nccf_lags_ = max_lag - first_nccf_lag_;
int32_t window_size = RoundUp(window_dur * sample_rate_);
int32_t half_wind = window_size / 2;
int32_t frame_size = window_size + max_lag;
std::vector<float> mixture;
mixture.resize(residual_.size());
const float kMinCorrelationStep = 0.001; // Pulse separation
// before computing new
// correlation values.
const float kResidFract = 0.7; // Fraction of the residual to use.
const float kPcmFract = 1.0 - kResidFract; // Fraction of the input to use.
for (size_t i = 0; i < residual_.size(); ++i) {
mixture[i] = (kResidFract * residual_[i]) + (kPcmFract * signal_[i]);
}
int32_t min_step = RoundUp(sample_rate_ * kMinCorrelationStep);
int32_t old_start = - (2.0 * min_step);
for (size_t peak = 0; peak < resid_peaks_.size(); ++peak) {
int32_t start = resid_peaks_[peak].resid_index - half_wind;
if (start < 0) {
start = 0;
}
size_t end = start + frame_size;
if ((end >= mixture.size()) || ((start - old_start) < min_step)) {
resid_peaks_[peak].nccf = resid_peaks_[peak - 1].nccf;
resid_peaks_[peak].nccf_periods = resid_peaks_[peak - 1].nccf_periods;
} else {
CrossCorrelation(mixture, start, first_nccf_lag_, n_nccf_lags_,
window_size, &(resid_peaks_[peak].nccf));
FindNccfPeaks(resid_peaks_[peak].nccf, peak_thresh,
&(resid_peaks_[peak].nccf_periods));
// Turn the peak indices from FindNccfPeaks into NCCF period hyps.
for (size_t i = 0; i < resid_peaks_[peak].nccf_periods.size(); ++i) {
resid_peaks_[peak].nccf_periods[i] += first_nccf_lag_;
}
old_start = start;
}
}
}
void EpochTracker::Window(const std::vector<float>& input, int32_t offset, size_t size,
float* output) {
if (size != window_.size()) {
window_.resize(size);
float arg = 2.0 * M_PI / size;
for (size_t i = 0; i < size; ++i) {
window_[i] = 0.5 - (0.5 * cos((i + 0.5) * arg));
}
}
const float* data = (&(input.front())) + offset;
for (size_t i = 0; i < size; ++i) {
output[i] = data[i] * window_[i];
}
}
bool EpochTracker::GetBandpassedRmsSignal(const std::vector<float>& input,
float sample_rate,
float low_limit, float high_limit,
float frame_interval,
float frame_dur,
std::vector<float>* output_rms) {
size_t frame_step = RoundUp(sample_rate * frame_interval);
size_t frame_size = RoundUp(sample_rate * frame_dur);
size_t n_frames = 1 + ((input.size() - frame_size) / frame_step);
if (n_frames < 2) {
fprintf(stderr, "input too small (%d) in GetBandpassedRmsSignal\n",
static_cast<int>(input.size()));
output_rms->resize(0);
return false;
}
output_rms->resize(n_frames);
FFT ft(FFT::fft_pow2_from_window_size(frame_size));
int32_t fft_size = ft.get_fftSize();
int32_t first_bin = RoundUp(fft_size * low_limit / sample_rate);
int32_t last_bin = RoundUp(fft_size * high_limit / sample_rate);
float* re = new float[fft_size];
float* im = new float[fft_size];
size_t first_frame = frame_size / (2 * frame_step);
if ((first_frame * 2 * frame_step) < frame_size) {
first_frame++;
}
for (size_t frame = first_frame; frame < n_frames; ++frame) {
Window(input, (frame - first_frame) * frame_step, frame_size, re);
for (size_t i = 0; i < frame_size; ++i) {
im[i] = 0.0;
}
for (int32_t i = frame_size; i < fft_size; ++i) {
re[i] = im[i] = 0.0;
}
ft.fft(re, im);
float rms = 20.0 *
log10(1.0 + ft.get_band_rms(re, im, first_bin, last_bin));
(*output_rms)[frame] = rms;
if (frame == first_frame) {
for (size_t bframe = 0; bframe < first_frame; ++bframe) {
(*output_rms)[bframe] = rms;
}
}
}
delete [] re;
delete [] im;
return true;
}
void EpochTracker::GetSymmetryStats(const std::vector<float>& data, float* pos_rms,
float* neg_rms, float* mean) {
int32_t n_input = data.size();
double p_sum = 0.0;
double n_sum = 0.0;
double sum = 0.0;
int32_t n_p = 0;
int32_t n_n = 0;
for (int32_t i = 0; i < n_input; ++i) {
sum += data[i];
}
*mean = sum / n_input;
for (int32_t i = 0; i < n_input; ++i) {
double val = data[i] - *mean;
if (val > 0.0) {
p_sum += (val * val);
n_p++;
} else {
if (val < 0.0) {
n_sum += (val * val);
n_n++;
}
}
}
*pos_rms = sqrt(p_sum / n_p);
*neg_rms = sqrt(n_sum / n_n);
}
void EpochTracker::NormalizeAmplitude(const std::vector<float>& input,
float sample_rate,
std::vector<float>* output) {
int32_t n_input = input.size();
int32_t ref_size = RoundUp(sample_rate * ref_dur_);
std::vector<float> wind;
output->resize(n_input);
// Just calling Window here to create a Hann window in window_.
Window(input, 0, ref_size, &(output->front()));
int32_t ref_by_2 = ref_size / 2;
int32_t frame_step = RoundUp(sample_rate * internal_frame_interval_);
int32_t limit = n_input - ref_size;
int32_t frame_limit = ref_by_2;
int32_t data_p = 0;
int32_t frame_p = 0;
double old_inv_rms = 0.0;
while (frame_p < limit) {
double ref_energy = 1.0; // to prevent divz
for (int32_t i = 0; i < ref_size; ++i) {
double val = window_[i] * input[i + frame_p];
ref_energy += (val * val);
}
double inv_rms = sqrt(static_cast<double>(ref_size) / ref_energy);
double delta_inv_rms = 0.0;
if (frame_p > 0) {
delta_inv_rms = (inv_rms - old_inv_rms) / frame_step;
} else {
old_inv_rms = inv_rms;
}
for (int i = 0; i < frame_limit; ++i, ++data_p) {
(*output)[data_p] = input[data_p] * old_inv_rms;
old_inv_rms += delta_inv_rms;
}
frame_limit = frame_step;
frame_p += frame_step;
}
for ( ; data_p < n_input; ++data_p) {
(*output)[data_p] = input[data_p] * old_inv_rms;
}
}
bool EpochTracker::ComputePolarity(int *polarity) {
if (sample_rate_ <= 0.0) {
fprintf(stderr, "EpochTracker not initialized in ComputeFeatures\n");
return false;
}
if (!GetBandpassedRmsSignal(signal_, sample_rate_, min_freq_for_rms_,
max_freq_for_rms_, internal_frame_interval_,
rms_window_dur_, &bandpassed_rms_)) {
fprintf(stderr, "Failure in GetBandpassedRmsSignal\n");
return false;
}
if (!GetLpcResidual(signal_, sample_rate_, &residual_)) {
fprintf(stderr, "Failure in GetLpcResidual\n");
return false;
}
float mean = 0.0;
GetSymmetryStats(residual_, &positive_rms_, &negative_rms_, &mean);
*polarity = -1;
if (positive_rms_ > negative_rms_) {
*polarity = 1;
}
return true;
}
bool EpochTracker::ComputeFeatures(void) {
if (sample_rate_ <= 0.0) {
fprintf(stderr, "EpochTracker not initialized in ComputeFeatures\n");
return false;
}
if (!GetBandpassedRmsSignal(signal_, sample_rate_, min_freq_for_rms_,
max_freq_for_rms_, internal_frame_interval_,
rms_window_dur_, &bandpassed_rms_)) {
fprintf(stderr, "Failure in GetBandpassedRmsSignal\n");
return false;
}
if (!GetLpcResidual(signal_, sample_rate_, &residual_)) {
fprintf(stderr, "Failure in GetLpcResidual\n");
return false;
}
n_feature_frames_ = bandpassed_rms_.size();
float mean = 0.0;
GetSymmetryStats(residual_, &positive_rms_, &negative_rms_, &mean);
fprintf(stdout, "Residual symmetry: P:%f N:%f MEAN:%f\n",
positive_rms_, negative_rms_, mean);
if (positive_rms_ > negative_rms_) {
fprintf(stdout, "Inverting signal\n");
for (size_t i = 0; i < residual_.size(); ++i) {
residual_[i] = -residual_[i];
signal_[i] = -signal_[i];
}
}
NormalizeAmplitude(residual_, sample_rate_, &norm_residual_);
GetResidualPulses();
GetPulseCorrelations(correlation_dur_, correlation_thresh_);
GetVoiceTransitionFeatures();
GetRmsVoicingModulator();
return true;
}
bool EpochTracker::TrackEpochs(void) {
CreatePeriodLattice();
DoDynamicProgramming();
return BacktrackAndSaveOutput();
}
void EpochTracker::CreatePeriodLattice(void) {
int32_t low_period = RoundUp(sample_rate_ / max_f0_search_);
int32_t high_period = RoundUp(sample_rate_ / min_f0_search_);
int32_t total_cands = 0;
// For each pulse in the normalized residual...
for (size_t peak = 0; peak < resid_peaks_.size(); ++peak) {
size_t frame_index = resid_peaks_[peak].frame_index;
size_t resid_index = resid_peaks_[peak].resid_index;
int32_t min_period = resid_index + low_period;
int32_t max_period = resid_index + high_period;
float lowest_cost = 1.0e30;
float time = resid_index / sample_rate_;
int32_t best_nccf_period = resid_peaks_[peak].nccf_periods[0];
float best_cc_val =
resid_peaks_[peak].nccf[best_nccf_period - first_nccf_lag_];
best_corr_.push_back(time);
best_corr_.push_back(best_cc_val);
EpochCand* uv_cand = new EpochCand; // pre-allocate an unvoiced candidate.
uv_cand->voiced = false;
uv_cand->start_peak = peak;
uv_cand->cost_sum = 0.0;
uv_cand->local_cost = 0.0;
uv_cand->best_prev_cand = -1;
int32_t next_cands_created = 0;
// For each of the next residual pulses in the search range...
for (size_t npeak = peak + 1; npeak < resid_peaks_.size(); ++npeak) {
int32_t iperiod = resid_peaks_[npeak].resid_index - resid_index;
if (resid_peaks_[npeak].resid_index >= min_period) {
float fperiod = iperiod;
// Find the NCCF period that most closely matches.
int32_t cc_peak = 0;
float min_period_diff = fabs(log(fperiod / best_nccf_period));
for (size_t cc_peak_ind = 1;
cc_peak_ind < resid_peaks_[peak].nccf_periods.size();
++cc_peak_ind) {
int32_t nccf_period = resid_peaks_[peak].nccf_periods[cc_peak_ind];
float test_diff = fabs(log(fperiod / nccf_period));
if (test_diff < min_period_diff) {
min_period_diff = test_diff;
cc_peak = cc_peak_ind;
}
}
// Generate a forward-period candidate. Grade the candidate
// on closeness to a NCCF period hyp, value of the NCCF,
// values of the candidate endpoint peaks.
EpochCand* v_cand = new EpochCand;
v_cand->voiced = true;
v_cand->period = iperiod;
int32_t cc_index = iperiod - first_nccf_lag_;
float cc_value = 0.0;
// If this period is in the normal search range, retrieve the
// actual NCCF value for that lag.
if ((cc_index >= 0) && (cc_index < n_nccf_lags_)) {
cc_value = resid_peaks_[peak].nccf[cc_index];
} else { // punt and use the "closest" nccf peak
int32_t peak_cc_index = resid_peaks_[peak].nccf_periods[cc_peak] -
first_nccf_lag_;
cc_value = resid_peaks_[peak].nccf[peak_cc_index];
}
float per_dev_cost = period_deviation_wt_ * min_period_diff;
float level_cost = level_wt_ * (1.0 - prob_voiced_[frame_index]);
float period_cost = fperiod * period_wt_;
float peak_qual_cost = peak_quality_wt_ /
(resid_peaks_[npeak].peak_quality + resid_peaks_[peak].peak_quality);
float local_cost = (1.0 - cc_value) + per_dev_cost + peak_qual_cost +
level_cost + period_cost + reward_;
v_cand->local_cost = local_cost;
if (local_cost < lowest_cost) {
lowest_cost = local_cost;
// Evaluate this best voiced period as an unvoiced
// hypothesis. (There are always plenty of poor
// voiced candidates!)
uv_cand->period = iperiod;
level_cost = level_wt_ * prob_voiced_[frame_index];
uv_cand->local_cost = (nccf_uv_peak_wt_ * cc_value) +
level_cost + unvoiced_cost_ + reward_;
uv_cand->end_peak = npeak;
uv_cand->closest_nccf_period =
resid_peaks_[peak].nccf_periods[cc_peak];
}
v_cand->start_peak = peak;
v_cand->end_peak = npeak;
v_cand->closest_nccf_period = resid_peaks_[peak].nccf_periods[cc_peak];
v_cand->cost_sum = 0.0;
v_cand->best_prev_cand = -1;
resid_peaks_[peak].future.push_back(v_cand);
resid_peaks_[npeak].past.push_back(v_cand);
total_cands++;
next_cands_created++;
if (resid_peaks_[npeak].resid_index >= max_period) {
break; // Exit the search only after at least one peak has
// been found, even if it is necessary to go beyond
// the nominal maximum period.
}
} // end if this period is >= minimum search period.
} // end for each next pulse in the global period-search range.
// Install the unvoiced candidate for this pulse.
if (next_cands_created) { // Register the unvoiced hyp iff there
// was at least one voiced hyp.
resid_peaks_[peak].future.push_back(uv_cand);
resid_peaks_[uv_cand->end_peak].past.push_back(uv_cand);
total_cands++;
} else {
delete uv_cand;
}
// Now all residual-pulse period hyps that start at the current
// pulse have been generated.
// If this pulse is one of the first few in the residual that had
// no possible preceeding periods, mark it as an origin.
if (resid_peaks_[peak].past.size() == 0) { // Is this pulse an origin?
for (size_t pp = 0; pp < resid_peaks_[peak].future.size(); ++pp) {
resid_peaks_[peak].future[pp]->cost_sum =
resid_peaks_[peak].future[pp]->local_cost;
resid_peaks_[peak].future[pp]->best_prev_cand = -1;
}
} else { // There are previous period hyps to consider...
// Check if at least one UV hyp is included in the period hyps
// that end on this peak. If there are none, generate one by
// cloning the best voiced hyp in the collection, but score it
// as unvoiced.
int32_t uv_hyps_found = 0;
float lowest_cost = resid_peaks_[peak].past[0]->local_cost;
size_t lowest_index = 0;
for (size_t pcand = 0; pcand < resid_peaks_[peak].past.size(); ++pcand) {
if (!resid_peaks_[peak].past[pcand]->voiced) {
uv_hyps_found++;
} else {
if (resid_peaks_[peak].past[pcand]->local_cost < lowest_cost) {
lowest_index = pcand;
lowest_cost = resid_peaks_[peak].past[pcand]->local_cost;
}
}
}
if (!uv_hyps_found) { // clone an UV hyp from the best V hyp found.
size_t start_peak = resid_peaks_[peak].past[lowest_index]->start_peak;
EpochCand* uv_cand = new EpochCand;
uv_cand->voiced = false;
uv_cand->start_peak = start_peak;
uv_cand->end_peak = peak;
uv_cand->period = resid_peaks_[peak].past[lowest_index]->period;
uv_cand->closest_nccf_period =
resid_peaks_[peak].past[lowest_index]->closest_nccf_period;
uv_cand->cost_sum = 0.0;
uv_cand->local_cost = 0.0;
uv_cand->best_prev_cand = -1;
float llevel_cost = level_wt_ *
prob_voiced_[resid_peaks_[start_peak].frame_index];
int32_t lcc_index = uv_cand->period - first_nccf_lag_;
float lcc_value = 0.0;
// If this period is in the normal search range, retrieve the
// actual NCCF value for that lag.
if ((lcc_index >= 0) && (lcc_index < n_nccf_lags_)) {
lcc_value = resid_peaks_[start_peak].nccf[lcc_index];
} else {
int32_t peak_cc_index = uv_cand->closest_nccf_period - first_nccf_lag_;
lcc_value = resid_peaks_[start_peak].nccf[peak_cc_index];
}
uv_cand->local_cost = (nccf_uv_peak_wt_ * lcc_value) + llevel_cost +
unvoiced_cost_ + reward_;
resid_peaks_[start_peak].future.push_back(uv_cand);
resid_peaks_[peak].past.push_back(uv_cand);
total_cands++;
}
}
} // end of the first pass at all pulses in the residual.
// All forward period hypotheses that start on all residual pulses
// in the signal have now been generated, and both voiced and
// unvoiced continuity throughout the lattice of hyps have been
// assured.
}
void EpochTracker::DoDynamicProgramming(void) {
// Perform the dynamic programming iterations over all pulses in
// the residual.
// For each pulse in the residual....
for (size_t peak = 0; peak < resid_peaks_.size(); ++peak) {
if (resid_peaks_[peak].past.size() == 0) { // Is this peak an origin?
continue;
}
// For each forward period hypothesis starting at this pulse...
for (size_t fhyp = 0; fhyp < resid_peaks_[peak].future.size(); ++fhyp) {
float min_cost = 1.0e30; // huge
size_t min_index = 0;
float forward_period = resid_peaks_[peak].future[fhyp]->period;
// For each of the previous period hyps ending on this pulse...
for (size_t phyp = 0; phyp < resid_peaks_[peak].past.size(); ++phyp) {
float sum_cost = 0.0;
// There are 4 voicing hyps to consider: V->V V->UV UV->V UV->UV
if (resid_peaks_[peak].future[fhyp]->voiced &&
resid_peaks_[peak].past[phyp]->voiced) { // v->v
float f_trans_cost = freq_trans_wt_ *
fabs(log(forward_period / resid_peaks_[peak].past[phyp]->period));
sum_cost = f_trans_cost + resid_peaks_[peak].past[phyp]->cost_sum;
} else {
if (resid_peaks_[peak].future[fhyp]->voiced &&
!resid_peaks_[peak].past[phyp]->voiced) { // uv->v
float v_transition_cost = voice_transition_factor_ *
(1.0 - voice_onset_prob_[resid_peaks_[peak].frame_index]);
sum_cost = resid_peaks_[peak].past[phyp]->cost_sum +
v_transition_cost;
} else {
if ((!resid_peaks_[peak].future[fhyp]->voiced) &&
resid_peaks_[peak].past[phyp]->voiced) { // v->uv
float v_transition_cost = voice_transition_factor_ *
(1.0 - voice_offset_prob_[resid_peaks_[peak].frame_index]);
sum_cost = resid_peaks_[peak].past[phyp]->cost_sum +
v_transition_cost;
} else { // UV->UV
sum_cost = resid_peaks_[peak].past[phyp]->cost_sum;
}
}
}
if (sum_cost < min_cost) {
min_cost = sum_cost;
min_index = phyp;
}
} // end for each previous period hyp
resid_peaks_[peak].future[fhyp]->cost_sum =
resid_peaks_[peak].future[fhyp]->local_cost + min_cost;
resid_peaks_[peak].future[fhyp]->best_prev_cand = min_index;
} // end for each foreward period hyp
} // end for each pulse in the residual signal.
// Here ends the dynamic programming.
}
bool EpochTracker::BacktrackAndSaveOutput(void) {
if (resid_peaks_.size() == 0) {
fprintf(stderr, "Can't backtrack with no residual peaks\n");
return false;
}
// Now find the best period hypothesis at the end of the signal,
// and backtrack from there.
float min_cost = 1.0e30;
int32_t min_index = 0;
// First, find a terminal peak which is the end of more than one
// period candidate.
size_t end = 0;
for (size_t peak = resid_peaks_.size() - 1; peak > 0; --peak) {
if ((resid_peaks_[peak].past.size() > 1)) {
for (size_t ind = 0; ind < resid_peaks_[peak].past.size(); ++ind) {
if (resid_peaks_[peak].past[ind]->cost_sum < min_cost) {
min_cost = resid_peaks_[peak].past[ind]->cost_sum;
min_index = ind;
}
}
end = peak;
break;
}
}
if (end == 0) {
fprintf(stderr, "No terminal peak found in DynamicProgramming\n");
return false;
}
output_.clear();
// Backtrack through the best pointers to retrieve the optimum
// period and voicing candidates. Save the GCI and voicing
// estimates.
while (1) {
int32_t start_peak = resid_peaks_[end].past[min_index]->start_peak;
TrackerResults tr;
tr.resid_index = resid_peaks_[start_peak].resid_index;
if (resid_peaks_[end].past[min_index]->voiced) {
float nccf_period =
resid_peaks_[end].past[min_index]->closest_nccf_period;
// TODO(dtalkin) If the closest NCCF period is more than epsilon
// different from the inter-pulse interval, use the inter-pulse
// interval instead.
tr.f0 = sample_rate_ / nccf_period;
tr.voiced = true;
} else {
tr.f0 = 0.0;
tr.voiced = false;
}
int32_t cc_index = resid_peaks_[end].past[min_index]->period -
first_nccf_lag_;
// If this period is in the normal search range, retrieve the
// actual NCCF value for that lag.
if ((cc_index >= 0) && (cc_index < n_nccf_lags_)) {
tr.nccf_value = resid_peaks_[start_peak].nccf[cc_index];
} else {
int32_t peak_cc_index =
resid_peaks_[end].past[min_index]->closest_nccf_period -
first_nccf_lag_;
tr.nccf_value = resid_peaks_[start_peak].nccf[peak_cc_index];
}
output_.push_back(tr);
size_t new_end = resid_peaks_[end].past[min_index]->start_peak;
min_index = resid_peaks_[end].past[min_index]->best_prev_cand;
if (min_index < 0) { // Has an origin pulse been reached?
break;
}
end = new_end;
}
// NOTE: The output_ array is in reverse time order!
return true;
}
void EpochTracker::GetFilledEpochs(float unvoiced_pm_interval,
std::vector<float>* times,
std::vector<int16_t>* voicing) {
times->clear();
voicing->clear();
float final_time = norm_residual_.size() / sample_rate_;
int32_t limit = output_.size() - 1;
int32_t i = limit;
// Produce the output in normal time order.
while (i >= 0) {
int32_t i_old = i;
float time = output_[i].resid_index / sample_rate_;
// Note that the pulse locations of both the beginning and end
// of any voiced period are of interest.
if (output_[i].voiced || ((i < limit) && (output_[i+1].voiced))) {
times->push_back(time);
voicing->push_back(1);
i--;
}
if (i == limit) {
time = 0.0;
}
if ((i > 0) && (!output_[i].voiced) && (time < final_time)) {
for ( ; i > 0; --i) {
if (output_[i].voiced) {
break;
}
}
float next_time = final_time;
int32_t fill_ind = 1;
if (i > 0) {
next_time = (output_[i].resid_index / sample_rate_) -
(1.0 / max_f0_search_);
}
float now = time + (fill_ind * unvoiced_pm_interval);
while (now < next_time) {
times->push_back(now);
voicing->push_back(0);
fill_ind++;
now = time + (fill_ind * unvoiced_pm_interval);
}
}
if (i == i_old) {
i--;
}
}
}
bool EpochTracker::ResampleAndReturnResults(float resample_interval,
std::vector<float>* f0,
std::vector<float>* correlations) {
if ((sample_rate_ <= 0.0) || (output_.size() == 0)) {
fprintf(stderr,
"Un-initialized EpochTracker or no output_ in ResampleAndReturnF0\n");
return false;
}
if (resample_interval <= 0.0) {
fprintf(stderr, "resample_interval <= 0.0 in ResampleAndReturnF0\n");
return false;
}
float last_time = (output_[0].resid_index / sample_rate_) + endpoint_padding_;
int32_t n_frames = RoundUp(last_time / resample_interval);
f0->resize(0);
correlations->resize(0);
f0->insert(f0->begin(), n_frames, 0.0);
correlations->insert(correlations->begin(), n_frames, 0.0);
int32_t limit = output_.size() - 1;
int32_t prev_frame = 0;
float prev_f0 = output_[limit].f0;
float prev_corr = output_[limit].nccf_value;
for (int32_t i = limit; i >= 0; --i) {
int32_t frame = RoundUp(output_[i].resid_index /
(sample_rate_ * resample_interval));
(*f0)[frame] = output_[i].f0;
(*correlations)[frame] = output_[i].nccf_value;
if ((frame - prev_frame) > 1) {
for (int32_t fr = prev_frame + 1; fr < frame; ++fr) {
(*f0)[fr] = prev_f0;
(*correlations)[fr] = prev_corr;
}
}
prev_frame = frame;
prev_corr = output_[i].nccf_value;
prev_f0 = output_[i].f0;
}
for (int32_t frame = prev_frame; frame < n_frames; ++frame) {
(*f0)[frame] = prev_f0;
(*correlations)[frame] = prev_corr;
}
return true;
}
bool EpochTracker::WriteDebugData(const std::vector<float>& data,
const std::string& extension) {
if (debug_name_.empty()) {
return true;
}
std::string filename = debug_name_ + "." + extension;
if (data.size() == 0) {
fprintf(stdout, "Data size==0 for %s in WriteDebugData\n",
filename.c_str());
return false;
}
FILE* out = fopen(filename.c_str(), "w");
if (!out) {
fprintf(stderr, "Can't open %s for debug output\n", filename.c_str());
return false;
}
size_t written = fwrite(&(data.front()), sizeof(data.front()),
data.size(), out);
fclose(out);
if (written != data.size()) {
fprintf(stderr, "Problems writing debug data (%d %d)\n",
static_cast<int>(written), static_cast<int>(data.size()));
return false;
}
return true;
}
bool EpochTracker::WriteDiagnostics(const std::string& file_base) {
if (!file_base.empty()) {
set_debug_name(file_base);
}
WriteDebugData(signal_, "pcm");
WriteDebugData(residual_, "resid");
WriteDebugData(norm_residual_, "nresid");
WriteDebugData(bandpassed_rms_, "bprms");
WriteDebugData(voice_onset_prob_, "onsetp");
WriteDebugData(voice_offset_prob_, "offsetp");
WriteDebugData(peaks_debug_, "pvals");
WriteDebugData(prob_voiced_, "pvoiced");
// best_corr_ is only available after CreatePeriodLattice.
WriteDebugData(best_corr_, "bestcorr");
// NOTE: if WriteDiagnostics is called before the
// DynamicProgramming, there will be nothing in output_.
if ((!debug_name_.empty()) && (output_.size() > 2)) {
std::string pm_name = debug_name_ + ".pmlab";
FILE* pmfile = fopen(pm_name.c_str(), "w");
fprintf(pmfile, "#\n");
std::vector<float> f0;
int32_t limit = output_.size() - 1;
// Produce debug output in normal time order.
for (int32_t i = limit; i >= 0; --i) {
float time = output_[i].resid_index / sample_rate_;
// Note that the pulse locations of both the beginning and end
// of any voiced period are of interest.
if (output_[i].voiced || ((i < limit) && (output_[i+1].voiced))) {
fprintf(pmfile, "%f blue \n", time);
} else {
fprintf(pmfile, "%f red \n", time);
}
f0.push_back(time);
f0.push_back(output_[i].f0);
f0.push_back(output_[i].nccf_value);
}
fclose(pmfile);
WriteDebugData(f0, "f0ap");
}
return true;
}
|