Spaces:
Sleeping
Sleeping
File size: 10,225 Bytes
9016314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import h5py
import numpy as np
from pathlib import Path
import tensorflow as tf
import torch
from tqdm import tqdm
import os
import sys
import glob
import random
import pdb
np.random.seed(0)
generate_tf_record = False
tfrecord_path = "/path/to/save/your/tfrecord/"
path_to_wavlm_feat = "/path/to/your/wavlm/feat"
if not os.path.exists(tfrecord_path):
generate_tf_record = True
os.makedirs(tfrecord_path, exist_ok=True)
train_filename = tfrecord_path + 'train'
valid_filename= tfrecord_path + 'valid'
test_filename= tfrecord_path + 'test'
train_path = Path(os.path.join(path_to_wavlm_feat, "train-clean-100"))
valid_path = Path(os.path.join(path_to_wavlm_feat, "dev-clean"))
test_path = Path(os.path.join(path_to_wavlm_feat, "test-clean"))
train_size = 27269
valid_size = 1940
test_size = 1850
def get_filenames(path):
all_files = []
all_files.extend(list(path.rglob("**/*.pt")))
return all_files
def length_filter(paths):
filtered_paths = []
print("filter short files")
for each in tqdm(paths):
data = torch.load(each).numpy().astype(np.float32)
if data.shape[0] < 200:
continue
filtered_paths.append(each)
return filtered_paths
def generate_mask(x, mask_type):
if mask_type == b'expand':
m = np.zeros_like(x)
N = np.random.randint(x.shape[0]//8, x.shape[0])
ind = np.random.choice(x.shape[0], N, replace=False)
m[ind] = 1.
elif mask_type == b'few_expand':
m = np.zeros_like(x)
N = np.random.randint(x.shape[0]//8)
ind = np.random.choice(x.shape[0], N, replace=False)
m[ind] = 1.
elif mask_type == b'arb_expand':
m = np.zeros_like(x)
N = np.random.randint(x.shape[0])
ind = np.random.choice(x.shape[0], N, replace=False)
m[ind] = 1.
elif mask_type == b'det_expand':
m = np.zeros_like(x)
ind = np.random.choice(x.shape[0], 100, replace=False)
m[ind] = 1.
elif mask_type == b'complete':
m = np.zeros_like(x)
while np.sum(m[:,0]) < x.shape[0] // 8:
p = np.random.uniform(-0.5, 0.5, size=4)
xa = np.concatenate([x, np.ones([x.shape[0],1])], axis=1)
m = (np.dot(xa, p) > 0).astype(np.float32)
m = np.repeat(np.expand_dims(m, axis=1), 3, axis=1)
else:
raise ValueError()
return m
def wrap_int64(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def wrap_bytes(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def print_progress(count, total):
# Percentage completion.
pct_complete = float(count) / total
# Status-message.
# Note the \r which means the line should overwrite itself.
msg = "\r- Progress: {0:.1%}".format(pct_complete)
# Print it.
sys.stdout.write(msg)
sys.stdout.flush()
def convert(image_paths, out_path, max_files=1000):
# Args:
# image_paths List of file-paths for the images.
# labels Class-labels for the images.
# out_path File-path for the TFRecords output file.
print("Converting: " + out_path)
# Number of images. Used when printing the progress.
num_images = len(image_paths)
splits = (num_images//max_files) + 1
if num_images%max_files == 0:
splits-=1
print(f"\nUsing {splits} shard(s) for {num_images} files, with up to {max_files} samples per shard")
file_count = 0
for i in tqdm(range(splits)):
# Open a TFRecordWriter for the output-file.
with tf.io.TFRecordWriter("{}_{}_{}.tfrecords".format(out_path, i+1, splits)) as writer:
# Iterate over all the image-paths and class-labels.
current_shard_count = 0
while current_shard_count < max_files:
index = i*max_files+current_shard_count
if index == len(image_paths):
break
current_image = image_paths[index]
# Load the image-file using matplotlib's imread function.
img = torch.load(current_image).numpy().astype(np.float32)
# Convert the image to raw bytes.
img_bytes = img.tostring()
# Create a dict with the data we want to save in the
# TFRecords file. You can add more relevant data here.
data = \
{
'image': wrap_bytes(img_bytes),
'length': wrap_int64(img.shape[0]),
"filename": wrap_bytes(bytes(os.path.splitext(current_image.name)[0], 'utf-8'))
}
# Wrap the data as TensorFlow Features.
feature = tf.train.Features(feature=data)
# Wrap again as a TensorFlow Example.
example = tf.train.Example(features=feature)
# Serialize the data.
serialized = example.SerializeToString()
# Write the serialized data to the TFRecords file.
writer.write(serialized)
current_shard_count+=1
file_count += 1
print(f"\nWrote {file_count} elements to TFRecord")
if generate_tf_record:
train_image_paths = length_filter(get_filenames(train_path))
valid_image_paths = length_filter(get_filenames(valid_path))
test_image_paths = length_filter(get_filenames(test_path))
print(f"Number of training data after length filering: {len(train_image_paths)}")
print(f"Number of valid data after length filering: {len(valid_image_paths)}")
print(f"Number of testing data after length filering: {len(test_image_paths)}")
random.Random(4).shuffle(train_image_paths)
train_size = len(train_image_paths)
valid_size = len(valid_image_paths)
test_size = len(test_image_paths)
convert(image_paths=train_image_paths,
out_path=train_filename)
convert(image_paths=valid_image_paths,
out_path=valid_filename)
convert(image_paths=test_image_paths,
out_path=test_filename)
def parse(serialized):
# Define a dict with the data-names and types we expect to
# find in the TFRecords file.
# It is a bit awkward that this needs to be specified again,
# because it could have been written in the header of the
# TFRecords file instead.
features = \
{
'image': tf.io.FixedLenFeature([], tf.string),
'length': tf.io.FixedLenFeature([], tf.int64),
'filename': tf.io.FixedLenFeature([], tf.string),
}
# Parse the serialized data so we get a dict with our data.
parsed_example = tf.io.parse_single_example(serialized=serialized,
features=features)
# Get the image as raw bytes.
image_raw = parsed_example['image']
# Decode the raw bytes so it becomes a tensor with type.
image = tf.io.decode_raw(image_raw, tf.float32)
# Get the label associated with the image.
length = parsed_example['length']
image = tf.reshape(image, [length, 1024])
filename = parsed_example['filename']
# The image and label are now correct TensorFlow types.
return image, filename
def process(x, filename, set_size, mask_type):
x = x/10
ind = np.random.choice(x.shape[0], set_size, replace=False)
x = x[ind]
m = generate_mask(x, mask_type)
#N = np.random.randint(set_size)
#S = np.random.randint(x.shape[0] - set_size + 1)
#x = x[S:S+set_size]
#m = np.zeros_like(x)
#S = np.random.randint(set_size - N + 1)
#m[S:S+N] = 1.0
return x, m, filename
def get_dst(split, set_size, mask_type):
if split == 'train':
files = glob.glob(train_filename+"*.tfrecords", recursive=False)
dst = tf.data.TFRecordDataset(files)
size = train_size
dst = dst.map(parse)
dst = dst.shuffle(256)
dst = dst.map(lambda x, y: tuple(tf.compat.v1.py_func(process, [x, y, set_size, mask_type], [tf.float32, tf.float32, tf.string])), num_parallel_calls=8)
elif split == 'valid':
files = glob.glob(valid_filename+"*.tfrecords", recursive=False)
dst = tf.data.TFRecordDataset(files)
size = valid_size
dst = dst.map(parse)
dst = dst.map(lambda x, y: tuple(tf.compat.v1.py_func(process, [x, y, set_size, mask_type], [tf.float32, tf.float32, tf.string])), num_parallel_calls=8)
else:
files = glob.glob(test_filename+"*.tfrecords", recursive=False)
dst = tf.data.TFRecordDataset(files)
size = test_size
dst = dst.map(parse)
dst = dst.map(lambda x, y: tuple(tf.compat.v1.py_func(process, [x, y, set_size, mask_type], [tf.float32, tf.float32, tf.string])), num_parallel_calls=8)
return dst, size
class Dataset(object):
def __init__(self, split, batch_size, set_size, mask_type):
g = tf.Graph()
with g.as_default():
# open a session
config = tf.compat.v1.ConfigProto()
config.log_device_placement = True
config.allow_soft_placement = True
config.gpu_options.allow_growth = True
self.sess = tf.compat.v1.Session(config=config, graph=g)
# build dataset
dst, size = get_dst(split, set_size, mask_type)
self.size = size
self.num_batches = self.size // batch_size
dst = dst.batch(batch_size, drop_remainder=False)
dst = dst.prefetch(1)
dst_it = tf.compat.v1.data.make_initializable_iterator(dst)
x, b, filename = dst_it.get_next()
self.x = x
self.b = b
self.filename = filename
#self.x = tf.reshape(x, [batch_size, set_size, 1024])
#self.b = tf.reshape(b, [batch_size, set_size, 1024])
self.dimension = 1024
self.initializer = dst_it.initializer
def initialize(self):
self.sess.run(self.initializer)
def next_batch(self):
x, b, filename = self.sess.run([self.x, self.b, self.filename])
m = np.ones_like(b)
return {'x':x, 'b':b, 'm':m, "f":filename} |