Spaces:
Sleeping
Sleeping
File size: 9,702 Bytes
9016314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import torchaudio.transforms as T
from models import GeneratorNSF as Generator, PitchEncoder as PitchEmbedding
from torch import Tensor
from torchaudio.sox_effects import apply_effects_tensor
from wavlm.WavLM import WavLM, WavLMConfig
import json
from utils.tools import AttrDict, load_wav
SPEAKER_INFORMATION_WEIGHTS = [
0, 0, 0, 0, 0, 0, # layer 0-5
1.0, 0, 0, 0,
0, 0, 0, 0, 0, 0, # layer 15
0, 0, 0, 0, 0, 0, # layer 16-21
0, # layer 22
0, 0 # layer 23-24
]
SPEAKER_INFORMATION_LAYER = 6
def fast_cosine_dist(source_feats: Tensor, matching_pool: Tensor, device: str = 'cpu') -> Tensor:
""" Like torch.cdist, but fixed dim=-1 and for cosine distance."""
source_norms = torch.norm(source_feats, p=2, dim=-1).to(device)
matching_norms = torch.norm(matching_pool, p=2, dim=-1)
dotprod = -torch.cdist(source_feats[None].to(device), matching_pool[None], p=2)[0]**2 + source_norms[:, None]**2 + matching_norms[None]**2
dotprod /= 2
dists = 1 - ( dotprod / (source_norms[:, None] * matching_norms[None]) )
return dists
class SVCNN(nn.Module):
def __init__(self,
model_ckpt_path,
model_cfg_path='config.json',
wavlm_ckpt_path='ckpt/WavLM-Large.pt',
device='cpu'
) -> None:
super().__init__()
# set which features to extract from wavlm
self.weighting = torch.tensor(SPEAKER_INFORMATION_WEIGHTS, device=device)[:, None]
# load model
with open(model_cfg_path) as f:
data = f.read()
json_config = json.loads(data)
model_cfg = AttrDict(json_config)
pitch_emb = PitchEmbedding(model_cfg).to(device)
model = Generator(model_cfg).to(device)
state_dict_g = torch.load(model_ckpt_path, map_location='cpu')
pitch_emb.load_state_dict(state_dict_g['pitch_encoder'])
model.load_state_dict(state_dict_g['generator'])
model.remove_weight_norm()
self.pitch_emb = pitch_emb.to(device).eval()
self.model = model.to(device).eval()
print(f"Generator loaded with {sum([p.numel() for p in model.parameters() if p.requires_grad]) + sum([p.numel() for p in pitch_emb.parameters() if p.requires_grad]):,d} parameters.")
self.h = model_cfg
# load wavlm
wavlm_ckpt = torch.load(wavlm_ckpt_path, map_location='cpu')
cfg = WavLMConfig(wavlm_ckpt['cfg'])
wavlm = WavLM(cfg)
wavlm.load_state_dict(wavlm_ckpt['model'])
wavlm.to(device)
self.wavlm = wavlm.eval()
print('wavlm loaded')
self.device = torch.device(device)
self.sr = 16000
self.hop_length = 320
def get_matching_set(self, p: Path|str, weights=None, vad_trigger_level=0, out_path=None) -> Tensor:
""" Get concatenated wavlm features for the matching set using all waveforms in `wavs`,
specified as either a list of paths or list of loaded waveform tensors of
shape (channels, T), assumed to be of 16kHz sample rate.
Optionally specify custom WavLM feature weighting with `weights`.
"""
feats = []
# 只取有声段作为matching_set
# x, sr = torchaudio.load(p, normalize=True)
x, sr = load_wav(p, self.sr)
# x, _, __ = trim_long_silences(x, sr)
audio_length = len(x)
slice_length = 60*self.sr
for start_pos in range(0, audio_length, slice_length):
end_pos = start_pos + slice_length
slice_x = x[start_pos:end_pos]
slice_x = torch.from_numpy(slice_x).float()
feats.append(self.get_features(slice_x, weights=self.weighting if weights is None else weights, vad_trigger_level=vad_trigger_level))
feats = torch.concat(feats, dim=0).cpu()
if out_path:
os.makedirs(os.path.dirname(out_path), exist_ok=True)
torch.save(feats, out_path)
return feats
@torch.inference_mode()
def vocode(self, c: Tensor, pitch:Tensor) -> Tensor:
y_g_hat = self.model(c, pitch)
y_g_hat = y_g_hat.squeeze(1)
return y_g_hat
@torch.inference_mode()
def get_features(self, path, weights=None, vad_trigger_level=0):
"""Returns features of `path` waveform as a tensor of shape (seq_len, dim), optionally perform VAD trimming
on start/end with `vad_trigger_level`.
"""
# load audio
if weights == None: weights = self.weighting
if type(path) in [str, Path]:
# x, sr = torchaudio.load(path, normalize=True)
x, sr = load_wav(path, self.sr)
x = torch.from_numpy(x).float()
else:
x: Tensor = path
sr = self.sr
if x.dim() == 1: x = x[None]
assert sr == self.sr, f"input audio sample rate must be 16kHz. Got {sr}"
# trim silence from front and back
if vad_trigger_level > 1e-3:
transform = T.Vad(sample_rate=sr, trigger_level=vad_trigger_level)
x_front_trim = transform(x)
waveform_reversed, sr = apply_effects_tensor(x_front_trim, sr, [["reverse"]])
waveform_reversed_front_trim = transform(waveform_reversed)
waveform_end_trim, sr = apply_effects_tensor(
waveform_reversed_front_trim, sr, [["reverse"]]
)
x = waveform_end_trim
# extract the representation of each layer
wavs_split = torch.tensor_split(x, (x.shape[1]-1)//(sr*30)+1, dim=1)
feature_list = []
for wav_chunk in wavs_split:
wav_input_16khz = wav_chunk.to(self.device)
if torch.allclose(weights, self.weighting):
# use fastpath
features = self.wavlm.extract_features(wav_input_16khz, output_layer=SPEAKER_INFORMATION_LAYER, ret_layer_results=False)[0]
features = features.squeeze(0)
feature_list.append(features)
else:
# use slower weighted
rep, layer_results = self.wavlm.extract_features(wav_input_16khz, output_layer=self.wavlm.cfg.encoder_layers, ret_layer_results=True)[0]
features = torch.cat([x.transpose(0, 1) for x, _ in layer_results], dim=0) # (n_layers, seq_len, dim)
# save full sequence
features = (features*weights[:, None] ).sum(dim=0) # (seq_len, dim)
feature_list.append(features)
return torch.cat(feature_list)
@torch.inference_mode()
def match(self, query_seq: Tensor, pitch:Tensor, pitch_bins:Tensor, synth_set: Tensor,
topk: int = 4, query_mask: Tensor = None, alpha = 0, tgt_loudness_db: float | None = -16,
target_duration: float | None = None, device: str | None = None) -> Tensor:
""" Given `query_seq`, `matching_set`, and `synth_set` tensors of shape (N, dim), perform kNN regression matching
with k=`topk`. Inputs:
- `query_seq`: Tensor (N1, dim) of the input/source query features.
- `matching_set`: Tensor (N2, dim) of the matching set used as the 'training set' for the kNN algorithm.
- `synth_set`: optional Tensor (N2, dim) corresponding to the matching set. We use the matching set to assign each query
vector to a vector in the matching set, and then use the corresponding vector from the synth set during decoder synthesis.
By default, and for best performance, this should be identical to the matching set.
- `topk`: k in the kNN -- the number of nearest neighbors to average over.
- `tgt_loudness_db`: float db used to normalize the output volume. Set to None to disable.
- `target_duration`: if set to a float, interpolate resulting waveform duration to be equal to this value in seconds.
- `device`: if None, uses default device at initialization. Otherwise uses specified device
Returns:
- converted waveform of shape (T,)
"""
device = torch.device(device) if device is not None else self.device
synth_set = synth_set.to(device)
query_seq = query_seq.to(device)
pitch = pitch.to(device)
pitch_bins = pitch_bins.to(device)
if target_duration is not None:
target_samples = int(target_duration*self.sr)
scale_factor = (target_samples/self.hop_length) / query_seq.shape[0] # n_targ_feats / n_input_feats
query_seq = F.interpolate(query_seq.T[None], scale_factor=scale_factor, mode='linear')[0].T
dists = fast_cosine_dist(query_seq, synth_set, device=device)
best = dists.topk(k=topk, largest=False, dim=-1)
out_feats = (1-alpha) * synth_set[best.indices].mean(dim=1) + alpha * query_seq
if query_mask is not None:
query_mask = query_mask[..., None].repeat([1, out_feats.shape[-1]])
out_feats = out_feats * query_mask + query_seq * (query_mask == False)
out_feats = torch.repeat_interleave(out_feats, 2, 0)
out_feats = self.pitch_emb(out_feats, pitch_bins)
prediction = self.vocode(out_feats[None].to(device), pitch.unsqueeze(0)).cpu().squeeze()
# normalization
if tgt_loudness_db is not None:
src_loudness = torchaudio.functional.loudness(prediction[None], self.h.sampling_rate)
tgt_loudness = tgt_loudness_db
pred_wav = torchaudio.functional.gain(prediction, tgt_loudness - src_loudness)
else: pred_wav = prediction
return pred_wav |