Spaces:
Sleeping
Sleeping
File size: 1,251 Bytes
9016314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import numpy as np
import resampy
import soundfile as sf
from utils.spectrogram import VoicedAreaDetection
def load_wav(wav_path, sr=24000):
# wav, fs = librosa.load(wav_path, sr=sr)
wav, fs = sf.read(wav_path)
if fs != sr:
wav = resampy.resample(wav, fs, sr, axis=0)
fs = sr
# assert fs == sr, f"input audio sample rate must be {sr}Hz. Got {fs}"
peak = np.abs(wav).max()
if peak > 1.0:
wav /= peak
return wav, fs
def extract_voiced_area(wav_path, hi_freq=1000, hop_size=480, energy_thres=0.5):
wav, fs = load_wav(wav_path)
voiced_flag = VoicedAreaDetection(
x=wav,
sr=fs,
n_fft=2048,
n_shift=hop_size,
win_length=2048,
hi_freq=hi_freq,
energy_thres=energy_thres,
)
return voiced_flag
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self |