Spaces:
Sleeping
Sleeping
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns; sns.set() | |
def visualize(s, batch, prefix): | |
if len(s.shape) == 5: | |
x, b, m = batch['x'], batch['b'], batch['m'] | |
im_visualize(s, x, b, m, prefix) | |
elif len(s.shape) == 3: | |
x, b, m = batch['x'], batch['b'], batch['m'] | |
pc_visualize(s, x, b, m, prefix) | |
elif len(s.shape) == 4: | |
xc, yc, xt, yt = batch['xc'], batch['yc'], batch['xt'], batch['yt'] | |
fn_visualize(s, xc, yc, xt, yt, prefix) | |
else: | |
raise ValueError() | |
def im_visualize(s, x, b, m, prefix): | |
B,N,H,W,C = s.shape | |
for i in range(B): | |
ss, xx, bb, mm = s[i], x[i], b[i], m[i] | |
if ss.shape[-1] == 2: # kspace | |
C = 1 | |
ss = np.expand_dims(np.absolute(np.fft.ifft2(np.fft.ifftshift(ss[...,0] + ss[...,1] * 1j, axes=(-2,-1)))), axis=-1) | |
ss = np.array(ss*255, dtype=np.uint8) | |
xx = np.expand_dims(np.absolute(np.fft.ifft2(np.fft.ifftshift(xx[...,0] + xx[...,1] * 1j, axes=(-2,-1)))), axis=-1) | |
xx = np.array(xx*255, dtype=np.uint8) | |
bb = bb[...,0:1] | |
mm = mm[...,0:1] | |
ss = np.transpose(ss, [1,0,2,3]).reshape(H,W*N,C).squeeze() | |
xx = np.transpose(xx, [1,0,2,3]).reshape(H,W*N,C).squeeze() | |
bb = np.transpose(bb, [1,0,2,3]).reshape(H,W*N,C).squeeze() | |
mm = np.transpose(mm, [1,0,2,3]).reshape(H,W*N,C).squeeze() | |
xm = xx * mm + (1-mm) * 128 | |
xo = xx * bb + (1-bb) * 128 | |
img = np.concatenate([xm, xo, ss]).astype(np.uint8) | |
plt.imsave(f'{prefix}_{i}.png', img) | |
def pc_visualize(s, x, b, m, prefix): | |
B,N,C = s.shape | |
for i in range(B): | |
ss, xx, bb = s[i], x[i], b[i] | |
o = np.where(bb[:,0]==1)[0] | |
fig = plt.figure(figsize=(7.5, 2.5)) | |
ax = fig.add_subplot(131, projection='3d') | |
ax.scatter(xx[:,0], xx[:,1], xx[:,2], c='g', s=5) | |
ax.axis('off') | |
ax.grid(False) | |
ax = fig.add_subplot(132, projection='3d') | |
ax.scatter(xx[o,0], xx[o,1], xx[o,2], c='g', s=5) | |
ax.axis('off') | |
ax.grid(False) | |
ax = fig.add_subplot(133, projection='3d') | |
ax.scatter(ss[:,0], ss[:,1], ss[:,2], c='g', s=5) | |
ax.axis('off') | |
ax.grid(False) | |
plt.savefig(f'{prefix}_{i}.png') | |
plt.close('all') | |
def fn_visualize(s, xc, yc, xt, yt, prefix): | |
B,K,N,C = s.shape | |
for i in range(B): | |
ss, xxc, yyc, xxt, yyt = s[i], xc[i], yc[i], xt[i], yt[i] | |
fig = plt.figure(figsize=(4.0, 2.5*K)) | |
for k in range(K): | |
ax = fig.add_subplot(K,1,k+1) | |
ax.plot(xxc[k], yyc[k], 'rx', markersize=8) | |
ax.plot(xxt[k], yyt[k], 'ko', markersize=3) | |
ax.plot(xxt[k], ss[k], 'bo', markersize=3) | |
plt.savefig(f'{prefix}_{i}.png') | |
plt.close('all') | |
def plot_functions(m, s, batch, prefix): | |
B,K,N,C = m.shape | |
xc, yc, xt, yt = batch['xc'], batch['yc'], batch['xt'], batch['yt'] | |
for i in range(B): | |
mm, ss, xxc, yyc, xxt, yyt = m[i,:,:,0], s[i,:,:,0], xc[i,:,:,0], yc[i,:,:,0], xt[i,:,:,0], yt[i,:,:,0] | |
fig = plt.figure(figsize=(4.0, 2.5*K)) | |
for k in range(K): | |
idx = np.argsort(xxt[k]) | |
ax = fig.add_subplot(K,1,k+1) | |
ax.plot(xxc[k], yyc[k], 'rx', markersize=8) | |
ax.plot(xxt[k], yyt[k], 'ko', markersize=3) | |
ax.plot(xxt[k,idx], mm[k,idx], 'b', linewidth=2) | |
plt.fill_between( | |
xxt[k,idx], | |
mm[k,idx] - ss[k,idx], | |
mm[k,idx] + ss[k,idx], | |
alpha=0.2, | |
facecolor='#65c9f7', | |
interpolate=True) | |
plt.savefig(f'{prefix}_{i}.png') | |
plt.close('all') | |
def plot_img_functions(m, s, batch, prefix): | |
B,K,N,C = m.shape | |
idx, xc, yc, xt, yt = batch['idx'], batch['xc'], batch['yc'], batch['xt'], batch['yt'] | |
yo = np.ones_like(yt) * 128 | |
yo[:,:,idx] = (yc + 0.5) * 255. | |
yt = (yt + 0.5) * 255. | |
m = (m + 0.5) * 255. | |
for i in range(B): | |
yoi, yti, mi = yo[i], yt[i], m[i] | |
yoi = np.reshape(yoi, [K,28,28]).astype(np.uint8) | |
yoi = np.reshape(np.transpose(yoi, [1,0,2]), [28, K*28]) | |
yti = np.reshape(yti, [K,28,28]).astype(np.uint8) | |
yti = np.reshape(np.transpose(yti, [1,0,2]), [28, K*28]) | |
mi = np.reshape(mi, [K,28,28]).astype(np.uint8) | |
mi = np.reshape(np.transpose(mi, [1,0,2]), [28, K*28]) | |
img = np.concatenate([yoi, mi, yti], axis=0) | |
plt.imsave(f'{prefix}_{i}.png', img) | |