Spaces:
Running
Running
import re, os | |
import requests | |
import json | |
import torch | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
headers = { | |
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36" | |
} | |
pattern = r'//www\.bilibili\.com/video[^"]*' | |
def get_bilibili_video_id(url): | |
match = re.search(r'/video/([a-zA-Z0-9]+)/', url) | |
extracted_value = match.group(1) | |
return extracted_value | |
# Get bilibili audio | |
def find_first_appearance_with_neighborhood(text, pattern): | |
match = re.search(pattern, text) | |
if match: | |
return match.group() | |
else: | |
return None | |
def search_bilibili(keyword): | |
if keyword.startswith("BV"): | |
req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1".format(keyword), headers=headers).text | |
else: | |
req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1&tids=3&page=1".format(keyword), headers=headers).text | |
video_link = "https:" + find_first_appearance_with_neighborhood(req, pattern) | |
return video_link | |
def get_response(html_url): | |
headers = { | |
"referer": "https://www.bilibili.com/", | |
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36" | |
} | |
response = requests.get(html_url, headers=headers) | |
return response | |
def get_video_info(html_url): | |
response = get_response(html_url) | |
html_data = re.findall('<script>window.__playinfo__=(.*?)</script>', response.text)[0] | |
json_data = json.loads(html_data) | |
if json_data['data']['dash']['audio'][0]['backupUrl']!=None: | |
audio_url = json_data['data']['dash']['audio'][0]['backupUrl'][0] | |
else: | |
audio_url = json_data['data']['dash']['audio'][0]['baseUrl'] | |
video_url = json_data['data']['dash']['video'][0]['baseUrl'] | |
return audio_url, video_url | |
def save_audio(title, html_url): | |
audio_url = get_video_info(html_url)[0] | |
#video_url = get_video_info(html_url)[1] | |
audio_content = get_response(audio_url).content | |
#video_content = get_response(video_url).content | |
with open(title + '.mp3', mode='wb') as f: | |
f.write(audio_content) | |
print("音乐内容保存完成") | |
#with open(title + '.mp4', mode='wb') as f: | |
# f.write(video_content) | |
#print("视频内容保存完成" | |
from uvr5.vr import AudioPre | |
weight_uvr5_root = "uvr5/uvr_model" | |
uvr5_names = [] | |
for name in os.listdir(weight_uvr5_root): | |
if name.endswith(".pth") or "onnx" in name: | |
uvr5_names.append(name.replace(".pth", "")) | |
func = AudioPre | |
pre_fun_hp2 = func( | |
agg=int(10), | |
model_path=os.path.join(weight_uvr5_root, "UVR-HP2.pth"), | |
device=device, | |
is_half=True, | |
) | |
pre_fun_hp5 = func( | |
agg=int(10), | |
model_path=os.path.join(weight_uvr5_root, "UVR-HP5.pth"), | |
device=device, | |
is_half=True, | |
) | |
import webrtcvad | |
from pydub import AudioSegment | |
from pydub.utils import make_chunks | |
import os | |
import librosa | |
import soundfile | |
import gradio as gr | |
def vad(audio_name): | |
audio = AudioSegment.from_file(audio_name, format="wav") | |
# Set the desired sample rate (WebRTC VAD supports only 8000, 16000, 32000, or 48000 Hz) | |
audio = audio.set_frame_rate(48000) | |
# Set single channel (mono) | |
audio = audio.set_channels(1) | |
# Initialize VAD | |
vad = webrtcvad.Vad() | |
# Set aggressiveness mode (an integer between 0 and 3, 3 is the most aggressive) | |
vad.set_mode(3) | |
# Convert pydub audio to bytes | |
frame_duration = 30 # Duration of a frame in ms | |
frame_width = int(audio.frame_rate * frame_duration / 1000) # width of a frame in samples | |
frames = make_chunks(audio, frame_duration) | |
# Perform voice activity detection | |
voiced_frames = [] | |
for frame in frames: | |
if len(frame.raw_data) < frame_width * 2: # Ensure frame is correct length | |
break | |
is_speech = vad.is_speech(frame.raw_data, audio.frame_rate) | |
if is_speech: | |
voiced_frames.append(frame) | |
# Combine voiced frames back to an audio segment | |
voiced_audio = sum(voiced_frames, AudioSegment.silent(duration=0)) | |
voiced_audio.export("voiced_audio.wav", format="wav") | |
def youtube_downloader( | |
video_identifier, | |
filename, | |
split_model, | |
start_time | |
): | |
print(video_identifier) | |
video_info = get_video_info(video_identifier)[0] | |
print(video_info) | |
audio_content = get_response(video_info).content | |
with open(filename.strip() + ".wav", mode="wb") as f: | |
f.write(audio_content) | |
audio_path = filename.strip() + ".wav" | |
start_ms = start_time * 1000 | |
end_ms = start_ms + 45000 | |
# make dir output | |
os.makedirs("output", exist_ok=True) | |
if split_model=="UVR-HP2": | |
pre_fun = pre_fun_hp2 | |
else: | |
pre_fun = pre_fun_hp5 | |
audio_orig = AudioSegment.from_file(audio_path) | |
if len(audio_orig) > end_ms: | |
# Extract the segment | |
segment = audio_orig[start_ms:end_ms] | |
segment.export(filename.strip() + ".wav", format="wav") | |
pre_fun._path_audio_(filename.strip() + ".wav", f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav") | |
os.remove(filename.strip()+".wav") | |
else: | |
segment = audio_orig[start_ms:len(audio_orig)] | |
segment.export(filename.strip() + ".wav", format="wav") | |
pre_fun._path_audio_(filename.strip() + ".wav", f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav") | |
os.remove(filename.strip()+".wav") | |
return f"./output/{split_model}/{filename}/vocal_{filename}.wav_10.wav", f"./output/{split_model}/{filename}/instrument_{filename}.wav_10.wav" | |
def youtube_downloader_100s( | |
video_identifier, | |
filename, | |
split_model | |
): | |
print(video_identifier) | |
video_info = get_video_info(video_identifier)[0] | |
print(video_info) | |
audio_content = get_response(video_info).content | |
with open(filename.strip() + ".wav", mode="wb") as f: | |
f.write(audio_content) | |
audio_path = filename.strip() + ".wav" | |
if split_model=="UVR-HP2": | |
pre_fun = pre_fun_hp2 | |
else: | |
pre_fun = pre_fun_hp5 | |
os.makedirs("output", exist_ok=True) | |
audio_orig = AudioSegment.from_file(audio_path) | |
if len(audio_orig) > 180000: | |
start_ms = 30000 | |
end_ms = start_ms + 150000 | |
# Extract the segment | |
segment = audio_orig[start_ms:end_ms] | |
segment.export(filename.strip() + ".wav", format="wav") | |
pre_fun._path_audio_(filename.strip() + ".wav", f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav") | |
os.remove(filename.strip()+".wav") | |
else: | |
pre_fun._path_audio_(filename.strip() + ".wav", f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav") | |
os.remove(filename.strip()+".wav") | |
return f"./output/{split_model}/{filename}/vocal_{filename}.wav_10.wav", f"./output/{split_model}/{filename}/instrument_{filename}.wav_10.wav" | |
def convert(start_time, song_name_src, song_name_ref, ref_audio, check_song, auto_key, key_shift, vocal_vol, inst_vol): | |
split_model = "UVR-HP5" | |
#song_name_ref = song_name_ref.strip().replace(" ", "") | |
#video_identifier = search_bilibili(song_name_ref) | |
#song_id = get_bilibili_video_id(video_identifier) | |
song_name_src = song_name_src.strip().replace(" ", "") | |
video_identifier_src = search_bilibili(song_name_src) | |
song_id_src = get_bilibili_video_id(video_identifier_src) | |
if ref_audio is None: | |
song_name_ref = song_name_ref.strip().replace(" ", "") | |
video_identifier = search_bilibili(song_name_ref) | |
song_id = get_bilibili_video_id(video_identifier) | |
if os.path.isdir(f"./output/{split_model}/{song_id}")==False: | |
audio, sr = librosa.load(youtube_downloader_100s(video_identifier, song_id, split_model)[0], sr=24000, mono=True) | |
soundfile.write("audio_ref.wav", audio, sr) | |
else: | |
audio, sr = librosa.load(f"./output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav", sr=24000, mono=True) | |
soundfile.write("audio_ref.wav", audio, sr) | |
vad("audio_ref.wav") | |
else: | |
multi_channel_audio = AudioSegment.from_file(ref_audio, format="wav") | |
mono_audio = multi_channel_audio.set_channels(1) | |
mono_audio.export("voiced_audio.wav", format="wav") | |
#if os.path.isdir(f"./output/{split_model}/{song_id_src}")==False: | |
audio_src, sr_src = librosa.load(youtube_downloader(video_identifier_src, song_id_src, split_model, start_time)[0], sr=24000, mono=True) | |
soundfile.write("audio_src.wav", audio_src, sr_src) | |
#else: | |
# audio_src, sr_src = librosa.load(f"./output/{split_model}/{song_id_src}/vocal_{song_id_src}.wav_10.wav", sr=24000, mono=True) | |
# soundfile.write("audio_src.wav", audio_src, sr_src) | |
if os.path.isfile("output_svc/NeuCoSVCv2.wav"): | |
os.remove("output_svc/NeuCoSVCv2.wav") | |
if check_song == True: | |
if auto_key == True: | |
os.system(f"python inference.py --src_wav_path audio_src.wav --ref_wav_path voiced_audio.wav") | |
else: | |
os.system(f"python inference.py --src_wav_path audio_src.wav --ref_wav_path voiced_audio.wav --key_shift {key_shift}") | |
else: | |
if auto_key == True: | |
os.system(f"python inference.py --src_wav_path audio_src.wav --ref_wav_path voiced_audio.wav --speech_enroll") | |
else: | |
os.system(f"python inference.py --src_wav_path audio_src.wav --ref_wav_path voiced_audio.wav --key_shift {key_shift} --speech_enroll") | |
audio_vocal = AudioSegment.from_file("output_svc/NeuCoSVCv2.wav", format="wav") | |
# Load the second audio file | |
audio_inst = AudioSegment.from_file(f"output/{split_model}/{song_id_src}/instrument_{song_id_src}.wav_10.wav", format="wav") | |
audio_vocal = audio_vocal + vocal_vol # Increase volume of the first audio by 5 dB | |
audio_inst = audio_inst + inst_vol # Decrease volume of the second audio by 5 dB | |
# Concatenate audio files | |
combined_audio = audio_vocal.overlay(audio_inst) | |
# Export the concatenated audio to a new file | |
combined_audio.export(f"{song_name_src}-AI翻唱.wav", format="wav") | |
return f"{song_name_src}-AI翻唱.wav" | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("# <center>🥳💕🎶 NeuCoSVC v2 AI歌手全明星,无需训练、一键翻唱、重磅更新!</center>") | |
gr.Markdown("## <center>🌟 只需 1 个歌曲名,一键翻唱任意歌手的任意歌曲,支持说话语音翻唱,随时随地,听你想听!</center>") | |
gr.Markdown("### <center>🌊 [NeuCoSVC v2](https://github.com/thuhcsi/NeuCoSVC) 先享版 Powered by Tencent ARC Lab & Tsinghua University 💕</center>") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
inp1 = gr.Textbox(label="请填写想要AI翻唱的歌曲或BV号", placeholder="七里香 周杰伦", info="直接填写BV号的得到的歌曲最匹配,也可以选择填写“歌曲名+歌手名”") | |
inp2 = gr.Textbox(label="请填写含有目标音色的歌曲或BV号", placeholder="遇见 孙燕姿", info="例如您希望使用AI周杰伦的音色,就在此处填写周杰伦的任意一首歌") | |
with gr.Row(): | |
inp0 = gr.Number(value=0, label="起始时间 (秒)", info="此程序将自动从起始时间开始提取45秒的翻唱歌曲") | |
inp3 = gr.Checkbox(label="参考音频是否为歌曲演唱,默认为是", info="如果参考音频为正常说话语音,请取消打勾", value=True) | |
inp4 = gr.Checkbox(label="是否自动预测歌曲人声升降调,默认为是", info="如果需要手动调节歌曲人声升降调,请取消打勾", value=True) | |
with gr.Row(): | |
inp5 = gr.Slider(minimum=-12, maximum=12, value=0, step=1, label="歌曲人声升降调", info="默认为0,+2为升高2个key,以此类推") | |
inp6 = gr.Slider(minimum=-3, maximum=3, value=0, step=1, label="调节人声音量,默认为0") | |
inp7 = gr.Slider(minimum=-3, maximum=3, value=0, step=1, label="调节伴奏音量,默认为0") | |
btn = gr.Button("一键开启AI翻唱之旅吧💕", variant="primary") | |
with gr.Column(): | |
ref_audio = gr.Audio(label="您也可以选择从本地上传一段音色参考音频。需要为去除伴奏后的音频,建议上传长度为60~90s左右的.wav文件;如果您希望通过歌曲名自动提取参考音频,请勿在此上传音频文件", type="filepath", interactive=True) | |
out = gr.Audio(label="AI歌手为您倾情演唱的歌曲🎶", type="filepath", interactive=True) | |
btn.click(convert, [inp0, inp1, inp2, ref_audio, inp3, inp4, inp5, inp6, inp7], out) | |
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>") | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
</p> | |
</div> | |
''') | |
app.queue().launch(show_error=True) |