NeuCoSVC-2 / inference.py
kevinwang676's picture
Update inference.py
5d4265b verified
raw
history blame
4.22 kB
import os
import time
import numpy as np
import torch
import soundfile as sf
import argparse
from SVCNN import SVCNN
from utils.tools import extract_voiced_area
from utils.extract_pitch import extract_pitch_ref as extract_pitch, coarse_f0
SPEAKER_INFORMATION_WEIGHTS = [
0, 0, 0, 0, 0, 0, # layer 0-5
1.0, 0, 0, 0,
0, 0, 0, 0, 0, 0, # layer 15
0, 0, 0, 0, 0, 0, # layer 16-21
0, # layer 22
0, 0 # layer 23-24
]
SPEAKER_INFORMATION_LAYER = 6
APPLIED_INFORMATION_WEIGHTS = [
0, 0, 0, 0, 0, 0, # layer 0-5
0, 0, 0, 0,
0, 0, 0, 0, 0, 0, # layer 15
0, 0, 0, 0, 0.2, 0.2, # layer 16-21
0.2, # layer 22
0.2, 0.2 # layer 23-24
]
def svc(model, src_wav_path, ref_wav_path, synth_set_path=None, f0_factor=0., speech_enroll=False, out_dir="output", hallucinated_set_path=None, device='cpu'):
wav_name = os.path.basename(src_wav_path).split('.')[0]
ref_name = os.path.basename(ref_wav_path).split('.')[0]
f0_src, f0_factor = extract_pitch(src_wav_path, ref_wav_path, predefined_factor=f0_factor, speech_enroll=speech_enroll)
pitch_src = coarse_f0(f0_src)
query_mask = extract_voiced_area(src_wav_path, hop_size=480, energy_thres=0.1)
query_mask = torch.from_numpy(query_mask).to(device)
synth_weights = torch.tensor(
SPEAKER_INFORMATION_WEIGHTS, device=device)[:, None]
query_seq = model.get_features(
src_wav_path, weights=synth_weights)
if synth_set_path:
synth_set = torch.load(synth_set_path).to(device)
else:
synth_set = model.get_matching_set(ref_wav_path).to(device)
if hallucinated_set_path:
hallucinated_set = torch.from_numpy(np.load(hallucinated_set_path)).to(device)
synth_set = torch.cat([synth_set, hallucinated_set], dim=0)
query_len = query_seq.shape[0]
if len(query_mask) > query_len:
query_mask = query_mask[:query_len]
else:
p = query_len - len(query_mask)
query_mask = np.pad(query_mask, (0, p))
f0_len = query_len*2
if len(f0_src) > f0_len:
f0_src = f0_src[:f0_len]
pitch_src = pitch_src[:f0_len]
else:
p = f0_len-len(f0_src)
f0_src = np.pad(f0_src, (0, p), mode='edge')
pitch_src = np.pad(pitch_src, (0, p), mode='edge')
print(query_seq.shape)
print(synth_set.shape)
f0_src = torch.from_numpy(f0_src).float().to(device)
pitch_src = torch.from_numpy(pitch_src).to(device)
out_wav = model.match(query_seq, f0_src, pitch_src, synth_set, topk=4, query_mask=query_mask)
# out_wav is (T,) tensor converted 16kHz output wav using k=4 for kNN.
os.makedirs(out_dir, exist_ok=True)
wfname = f'{out_dir}/NeuCoSVCv2.wav'
sf.write(wfname, out_wav.numpy(), 24000)
def main(a):
model_ckpt_path = a.model_ckpt_path
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# device = 'cpu'
print(f'using {device} for inference')
f0factor = pow(2, a.key_shift / 12) if a.key_shift else 0.
speech_enroll = a.speech_enroll
model = SVCNN(model_ckpt_path, device=device)
t0 = time.time()
svc(model, a.src_wav_path, a.ref_wav_path, out_dir=a.out_dir, device=device, f0_factor=f0factor, speech_enroll=speech_enroll)
t1 = time.time()
print(f"{t1-t0:.2f}s to perfrom the conversion")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--src_wav_path', required=True)
parser.add_argument('--ref_wav_path', required=True)
parser.add_argument('--model_ckpt_path',
default='ckpt/G_150k.pt')
parser.add_argument('--out_dir', default='output_svc')
parser.add_argument(
'--key_shift', type=int,
help='Adjust the pitch of the source singing. Tone the song up or down in semitones.'
)
parser.add_argument(
'--speech_enroll', action='store_true',
help='When using speech as the reference audio, the pitch of the reference audio will be increased by 1.2 times \
when performing pitch shift to cover the pitch gap between singing and speech. \
Note: This option is invalid when key_shift is specified.'
)
a = parser.parse_args()
main(a)