Spaces:
Sleeping
Sleeping
import os | |
import sys | |
p = os.path.split(os.path.dirname(os.path.abspath(__file__)))[0] | |
sys.path.append(p) | |
import ast | |
import logging | |
import argparse | |
import numpy as np | |
import tensorflow as tf | |
from pprint import pformat | |
from utils.hparams import HParams | |
from models.runner import Runner | |
from models import get_model | |
from datasets import get_dataset | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--cfg_file', type=str) | |
parser.add_argument('--config', action='append', default=[]) | |
parser.add_argument('--mode', type=str, default=None) | |
parser.add_argument('--seed', type=int, default=1234) | |
parser.add_argument('--gpu', type=str, default='0') | |
args = parser.parse_args() | |
params = HParams(args.cfg_file) | |
# parse config | |
for kv in args.config: | |
k, v = kv.split('=', maxsplit=1) | |
assert k, "Config item can't have empty key" | |
assert v, "Config item can't have empty value" | |
try: | |
v = ast.literal_eval(v) | |
except ValueError: | |
v = str(v) | |
params.update({k: v}) | |
for handler in logging.root.handlers[:]: | |
logging.root.removeHandler(handler) | |
logging.basicConfig(filename=params.exp_dir + f'/{args.mode}.log', | |
filemode='w', | |
level=logging.INFO, | |
format='%(asctime)-15s %(message)s') | |
logging.info(pformat(params.dict)) | |
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu | |
np.random.seed(args.seed) | |
tf.compat.v1.set_random_seed(args.seed) | |
# data | |
trainset = get_dataset(params, 'train') | |
validset = get_dataset(params, 'valid') | |
testset = get_dataset(params, 'test') | |
logging.info((f"trainset: {trainset.size}", | |
f"validset: {validset.size}", | |
f"testset: {testset.size}")) | |
# model | |
model = get_model(params) | |
runner = Runner(params, model) | |
runner.set_dataset(trainset, validset, testset) | |
# run | |
if args.mode == 'train': | |
runner.run() | |
elif args.mode == 'resume': | |
model.load() | |
runner.run() | |
elif args.mode == 'test': | |
runner.evaluate() | |
else: | |
raise ValueError() | |