NeuCoSVC-2 / app.py
kevinwang676's picture
Update app.py
d36bc3c verified
raw
history blame
12.7 kB
import re, os
import requests
import json
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
headers = {
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36"
}
pattern = r'//www\.bilibili\.com/video[^"]*'
def get_bilibili_video_id(url):
match = re.search(r'/video/([a-zA-Z0-9]+)/', url)
extracted_value = match.group(1)
return extracted_value
# Get bilibili audio
def find_first_appearance_with_neighborhood(text, pattern):
match = re.search(pattern, text)
if match:
return match.group()
else:
return None
def search_bilibili(keyword):
if keyword.startswith("BV"):
req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1".format(keyword), headers=headers).text
else:
req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1&tids=3&page=1".format(keyword), headers=headers).text
video_link = "https:" + find_first_appearance_with_neighborhood(req, pattern)
return video_link
def get_response(html_url):
headers = {
"referer": "https://www.bilibili.com/",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36"
}
response = requests.get(html_url, headers=headers)
return response
def get_video_info(html_url):
response = get_response(html_url)
html_data = re.findall('<script>window.__playinfo__=(.*?)</script>', response.text)[0]
json_data = json.loads(html_data)
if json_data['data']['dash']['audio'][0]['backupUrl']!=None:
audio_url = json_data['data']['dash']['audio'][0]['backupUrl'][0]
else:
audio_url = json_data['data']['dash']['audio'][0]['baseUrl']
video_url = json_data['data']['dash']['video'][0]['baseUrl']
return audio_url, video_url
def save_audio(title, html_url):
audio_url = get_video_info(html_url)[0]
#video_url = get_video_info(html_url)[1]
audio_content = get_response(audio_url).content
#video_content = get_response(video_url).content
with open(title + '.mp3', mode='wb') as f:
f.write(audio_content)
print("音乐内容保存完成")
#with open(title + '.mp4', mode='wb') as f:
# f.write(video_content)
#print("视频内容保存完成"
from uvr5.vr import AudioPre
weight_uvr5_root = "uvr5/uvr_model"
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
if name.endswith(".pth") or "onnx" in name:
uvr5_names.append(name.replace(".pth", ""))
func = AudioPre
pre_fun_hp2 = func(
agg=int(10),
model_path=os.path.join(weight_uvr5_root, "UVR-HP2.pth"),
device=device,
is_half=True,
)
pre_fun_hp5 = func(
agg=int(10),
model_path=os.path.join(weight_uvr5_root, "UVR-HP5.pth"),
device=device,
is_half=True,
)
import webrtcvad
from pydub import AudioSegment
from pydub.utils import make_chunks
import os
import librosa
import soundfile
import gradio as gr
def vad(audio_name):
audio = AudioSegment.from_file(audio_name, format="wav")
# Set the desired sample rate (WebRTC VAD supports only 8000, 16000, 32000, or 48000 Hz)
audio = audio.set_frame_rate(48000)
# Set single channel (mono)
audio = audio.set_channels(1)
# Initialize VAD
vad = webrtcvad.Vad()
# Set aggressiveness mode (an integer between 0 and 3, 3 is the most aggressive)
vad.set_mode(3)
# Convert pydub audio to bytes
frame_duration = 30 # Duration of a frame in ms
frame_width = int(audio.frame_rate * frame_duration / 1000) # width of a frame in samples
frames = make_chunks(audio, frame_duration)
# Perform voice activity detection
voiced_frames = []
for frame in frames:
if len(frame.raw_data) < frame_width * 2: # Ensure frame is correct length
break
is_speech = vad.is_speech(frame.raw_data, audio.frame_rate)
if is_speech:
voiced_frames.append(frame)
# Combine voiced frames back to an audio segment
voiced_audio = sum(voiced_frames, AudioSegment.silent(duration=0))
voiced_audio.export("voiced_audio.wav", format="wav")
def youtube_downloader(
video_identifier,
filename,
split_model,
start_time
):
print(video_identifier)
video_info = get_video_info(video_identifier)[0]
print(video_info)
audio_content = get_response(video_info).content
with open(filename.strip() + ".wav", mode="wb") as f:
f.write(audio_content)
audio_path = filename.strip() + ".wav"
start_ms = start_time * 1000
end_ms = start_ms + 45000
# make dir output
os.makedirs("output", exist_ok=True)
if split_model=="UVR-HP2":
pre_fun = pre_fun_hp2
else:
pre_fun = pre_fun_hp5
audio_orig = AudioSegment.from_file(audio_path)
if len(audio_orig) > end_ms:
# Extract the segment
segment = audio_orig[start_ms:end_ms]
segment.export(filename.strip() + ".wav", format="wav")
pre_fun._path_audio_(filename.strip() + ".wav", f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav")
os.remove(filename.strip()+".wav")
else:
segment = audio_orig[start_ms:len(audio_orig)]
segment.export(filename.strip() + ".wav", format="wav")
pre_fun._path_audio_(filename.strip() + ".wav", f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav")
os.remove(filename.strip()+".wav")
return f"./output/{split_model}/{filename}/vocal_{filename}.wav_10.wav", f"./output/{split_model}/{filename}/instrument_{filename}.wav_10.wav"
def youtube_downloader_100s(
video_identifier,
filename,
split_model
):
print(video_identifier)
video_info = get_video_info(video_identifier)[0]
print(video_info)
audio_content = get_response(video_info).content
with open(filename.strip() + ".wav", mode="wb") as f:
f.write(audio_content)
audio_path = filename.strip() + ".wav"
if split_model=="UVR-HP2":
pre_fun = pre_fun_hp2
else:
pre_fun = pre_fun_hp5
os.makedirs("output", exist_ok=True)
audio_orig = AudioSegment.from_file(audio_path)
if len(audio_orig) > 200000:
start_ms = 30000
end_ms = start_ms + 170000
# Extract the segment
segment = audio_orig[start_ms:end_ms]
segment.export(filename.strip() + ".wav", format="wav")
pre_fun._path_audio_(filename.strip() + ".wav", f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav")
os.remove(filename.strip()+".wav")
else:
pre_fun._path_audio_(filename.strip() + ".wav", f"./output/{split_model}/{filename}/", f"./output/{split_model}/{filename}/", "wav")
os.remove(filename.strip()+".wav")
return f"./output/{split_model}/{filename}/vocal_{filename}.wav_10.wav", f"./output/{split_model}/{filename}/instrument_{filename}.wav_10.wav"
def convert(start_time, song_name_src, song_name_ref, ref_audio, check_song, auto_key, key_shift, vocal_vol, inst_vol):
split_model = "UVR-HP5"
#song_name_ref = song_name_ref.strip().replace(" ", "")
#video_identifier = search_bilibili(song_name_ref)
#song_id = get_bilibili_video_id(video_identifier)
song_name_src = song_name_src.strip().replace(" ", "")
video_identifier_src = search_bilibili(song_name_src)
song_id_src = get_bilibili_video_id(video_identifier_src)
if ref_audio is None:
song_name_ref = song_name_ref.strip().replace(" ", "")
video_identifier = search_bilibili(song_name_ref)
song_id = get_bilibili_video_id(video_identifier)
if os.path.isdir(f"./output/{split_model}/{song_id}")==False:
audio, sr = librosa.load(youtube_downloader_100s(video_identifier, song_id, split_model)[0], sr=24000, mono=True)
soundfile.write("audio_ref.wav", audio, sr)
else:
audio, sr = librosa.load(f"./output/{split_model}/{song_id}/vocal_{song_id}.wav_10.wav", sr=24000, mono=True)
soundfile.write("audio_ref.wav", audio, sr)
vad("audio_ref.wav")
else:
vad(ref_audio)
#if os.path.isdir(f"./output/{split_model}/{song_id_src}")==False:
audio_src, sr_src = librosa.load(youtube_downloader(video_identifier_src, song_id_src, split_model, start_time)[0], sr=24000, mono=True)
soundfile.write("audio_src.wav", audio_src, sr_src)
#else:
# audio_src, sr_src = librosa.load(f"./output/{split_model}/{song_id_src}/vocal_{song_id_src}.wav_10.wav", sr=24000, mono=True)
# soundfile.write("audio_src.wav", audio_src, sr_src)
if os.path.isfile("output_svc/NeuCoSVCv2.wav"):
os.remove("output_svc/NeuCoSVCv2.wav")
if check_song == True:
if auto_key == True:
os.system(f"python inference.py --src_wav_path audio_src.wav --ref_wav_path voiced_audio.wav")
else:
os.system(f"python inference.py --src_wav_path audio_src.wav --ref_wav_path voiced_audio.wav --key_shift {key_shift}")
else:
if auto_key == True:
os.system(f"python inference.py --src_wav_path audio_src.wav --ref_wav_path voiced_audio.wav --speech_enroll")
else:
os.system(f"python inference.py --src_wav_path audio_src.wav --ref_wav_path voiced_audio.wav --key_shift {key_shift} --speech_enroll")
audio_vocal = AudioSegment.from_file("output_svc/NeuCoSVCv2.wav", format="wav")
# Load the second audio file
audio_inst = AudioSegment.from_file(f"output/{split_model}/{song_id_src}/instrument_{song_id_src}.wav_10.wav", format="wav")
audio_vocal = audio_vocal + vocal_vol # Increase volume of the first audio by 5 dB
audio_inst = audio_inst + inst_vol # Decrease volume of the second audio by 5 dB
# Concatenate audio files
combined_audio = audio_vocal.overlay(audio_inst)
# Export the concatenated audio to a new file
combined_audio.export(f"{song_name_src}-AI翻唱.wav", format="wav")
return f"{song_name_src}-AI翻唱.wav"
app = gr.Blocks()
with app:
gr.Markdown("# <center>🥳💕🎶 NeuCoSVC v2 AI歌手全明星,无需训练、一键翻唱、重磅更新!</center>")
gr.Markdown("## <center>🌟 只需 1 个歌曲名,一键翻唱任意歌手的任意歌曲,支持说话语音翻唱,随时随地,听你想听!</center>")
gr.Markdown("### <center>🌊 [NeuCoSVC v2](https://github.com/thuhcsi/NeuCoSVC) 先享版 Powered by Tencent ARC Lab & Tsinghua University 💕</center>")
with gr.Row():
with gr.Column():
with gr.Row():
inp1 = gr.Textbox(label="请填写想要AI翻唱的歌曲或BV号", placeholder="七里香 周杰伦", info="直接填写BV号的得到的歌曲最匹配,也可以选择填写“歌曲名+歌手名”")
inp2 = gr.Textbox(label="请填写含有目标音色的歌曲或BV号", placeholder="遇见 孙燕姿", info="例如您希望使用AI周杰伦的音色,就在此处填写周杰伦的任意一首歌")
with gr.Row():
inp0 = gr.Number(value=0, label="起始时间 (秒)", info="此程序将自动从起始时间开始提取45秒的翻唱歌曲")
inp3 = gr.Checkbox(label="参考音频是否为歌曲演唱,默认为是", info="如果参考音频为正常说话语音,请取消打勾", value=True)
inp4 = gr.Checkbox(label="是否自动预测歌曲人声升降调,默认为是", info="如果需要手动调节歌曲人声升降调,请取消打勾", value=True)
with gr.Row():
inp5 = gr.Slider(minimum=-12, maximum=12, value=0, step=1, label="歌曲人声升降调", info="默认为0,+2为升高2个key,以此类推")
inp6 = gr.Slider(minimum=-3, maximum=3, value=0, step=1, label="调节人声音量,默认为0")
inp7 = gr.Slider(minimum=-3, maximum=3, value=0, step=1, label="调节伴奏音量,默认为0")
btn = gr.Button("一键开启AI翻唱之旅吧💕", variant="primary")
with gr.Column():
ref_audio = gr.Audio(label="您也可以选择从本地上传一段音色参考音频。需要为去除伴奏后的音频,建议上传长度为60~90s左右的.wav文件;如果您希望通过歌曲名自动提取参考音频,请勿在此上传音频文件", type="filepath", interactive=True)
out = gr.Audio(label="AI歌手为您倾情演唱的歌曲🎶", type="filepath", interactive=True)
btn.click(convert, [inp0, inp1, inp2, ref_audio, inp3, inp4, inp5, inp6, inp7], out)
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
app.queue().launch(show_error=True)