Spaces:
Running
Running
import os | |
import time | |
import numpy as np | |
import torch | |
import soundfile as sf | |
import argparse | |
from SVCNN import SVCNN | |
from utils.tools import extract_voiced_area | |
from utils.extract_pitch import extract_pitch_ref as extract_pitch, coarse_f0 | |
SPEAKER_INFORMATION_WEIGHTS = [ | |
0, 0, 0, 0, 0, 0, # layer 0-5 | |
1.0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, # layer 15 | |
0, 0, 0, 0, 0, 0, # layer 16-21 | |
0, # layer 22 | |
0, 0 # layer 23-24 | |
] | |
SPEAKER_INFORMATION_LAYER = 6 | |
APPLIED_INFORMATION_WEIGHTS = [ | |
0, 0, 0, 0, 0, 0, # layer 0-5 | |
0, 0, 0, 0, | |
0, 0, 0, 0, 0, 0, # layer 15 | |
0, 0, 0, 0, 0.2, 0.2, # layer 16-21 | |
0.2, # layer 22 | |
0.2, 0.2 # layer 23-24 | |
] | |
def svc(model, src_wav_path, ref_wav_path, synth_set_path=None, f0_factor=0., speech_enroll=False, out_dir="output", hallucinated_set_path=None, device='cpu'): | |
wav_name = os.path.basename(src_wav_path).split('.')[0] | |
ref_name = os.path.basename(ref_wav_path).split('.')[0] | |
f0_src, f0_factor = extract_pitch(src_wav_path, ref_wav_path, predefined_factor=f0_factor, speech_enroll=speech_enroll) | |
pitch_src = coarse_f0(f0_src) | |
query_mask = extract_voiced_area(src_wav_path, hop_size=480, energy_thres=0.1) | |
query_mask = torch.from_numpy(query_mask).to(device) | |
synth_weights = torch.tensor( | |
SPEAKER_INFORMATION_WEIGHTS, device=device)[:, None] | |
query_seq = model.get_features( | |
src_wav_path, weights=synth_weights) | |
if synth_set_path: | |
synth_set = torch.load(synth_set_path).to(device) | |
else: | |
synth_set = model.get_matching_set(ref_wav_path).to(device) | |
if hallucinated_set_path: | |
hallucinated_set = torch.from_numpy(np.load(hallucinated_set_path)).to(device) | |
synth_set = torch.cat([synth_set, hallucinated_set], dim=0) | |
query_len = query_seq.shape[0] | |
if len(query_mask) > query_len: | |
query_mask = query_mask[:query_len] | |
else: | |
p = query_len - len(query_mask) | |
query_mask = np.pad(query_mask, (0, p)) | |
f0_len = query_len*2 | |
if len(f0_src) > f0_len: | |
f0_src = f0_src[:f0_len] | |
pitch_src = pitch_src[:f0_len] | |
else: | |
p = f0_len-len(f0_src) | |
f0_src = np.pad(f0_src, (0, p), mode='edge') | |
pitch_src = np.pad(pitch_src, (0, p), mode='edge') | |
print(query_seq.shape) | |
print(synth_set.shape) | |
f0_src = torch.from_numpy(f0_src).float().to(device) | |
pitch_src = torch.from_numpy(pitch_src).to(device) | |
out_wav = model.match(query_seq, f0_src, pitch_src, synth_set, topk=4, query_mask=query_mask) | |
# out_wav is (T,) tensor converted 16kHz output wav using k=4 for kNN. | |
os.makedirs(out_dir, exist_ok=True) | |
wfname = f'{out_dir}/NeuCoSVCv2.wav' | |
sf.write(wfname, out_wav.numpy(), 24000) | |
def main(a): | |
model_ckpt_path = a.model_ckpt_path | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# device = 'cpu' | |
print(f'using {device} for inference') | |
f0factor = pow(2, a.key_shift / 12) if a.key_shift else 0. | |
speech_enroll = a.speech_enroll | |
model = SVCNN(model_ckpt_path, device=device) | |
t0 = time.time() | |
svc(model, a.src_wav_path, a.ref_wav_path, a.out_dir, device, f0factor, speech_enroll) | |
t1 = time.time() | |
print(f"{t1-t0:.2f}s to perfrom the conversion") | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--src_wav_path', required=True) | |
parser.add_argument('--ref_wav_path', required=True) | |
parser.add_argument('--model_ckpt_path', | |
default='ckpt/G_150k.pt') | |
parser.add_argument('--out_dir', default='output_svc') | |
parser.add_argument( | |
'--key_shift', type=int, | |
help='Adjust the pitch of the source singing. Tone the song up or down in semitones.' | |
) | |
parser.add_argument( | |
'--speech_enroll', action='store_true', | |
help='When using speech as the reference audio, the pitch of the reference audio will be increased by 1.2 times \ | |
when performing pitch shift to cover the pitch gap between singing and speech. \ | |
Note: This option is invalid when key_shift is specified.' | |
) | |
a = parser.parse_args() | |
main(a) | |