import h5py import numpy as np from pathlib import Path import tensorflow as tf import torch from tqdm import tqdm import os import sys import glob import random import pdb np.random.seed(0) generate_tf_record = False tfrecord_path = "/path/to/save/your/tfrecord/" path_to_wavlm_feat = "/path/to/your/wavlm/feat" if not os.path.exists(tfrecord_path): generate_tf_record = True os.makedirs(tfrecord_path, exist_ok=True) train_filename = tfrecord_path + 'train' valid_filename= tfrecord_path + 'valid' test_filename= tfrecord_path + 'test' train_path = Path(os.path.join(path_to_wavlm_feat, "train-clean-100")) valid_path = Path(os.path.join(path_to_wavlm_feat, "dev-clean")) test_path = Path(os.path.join(path_to_wavlm_feat, "test-clean")) train_size = 27269 valid_size = 1940 test_size = 1850 def get_filenames(path): all_files = [] all_files.extend(list(path.rglob("**/*.pt"))) return all_files def length_filter(paths): filtered_paths = [] print("filter short files") for each in tqdm(paths): data = torch.load(each).numpy().astype(np.float32) if data.shape[0] < 200: continue filtered_paths.append(each) return filtered_paths def generate_mask(x, mask_type): if mask_type == b'expand': m = np.zeros_like(x) N = np.random.randint(x.shape[0]//8, x.shape[0]) ind = np.random.choice(x.shape[0], N, replace=False) m[ind] = 1. elif mask_type == b'few_expand': m = np.zeros_like(x) N = np.random.randint(x.shape[0]//8) ind = np.random.choice(x.shape[0], N, replace=False) m[ind] = 1. elif mask_type == b'arb_expand': m = np.zeros_like(x) N = np.random.randint(x.shape[0]) ind = np.random.choice(x.shape[0], N, replace=False) m[ind] = 1. elif mask_type == b'det_expand': m = np.zeros_like(x) ind = np.random.choice(x.shape[0], 100, replace=False) m[ind] = 1. elif mask_type == b'complete': m = np.zeros_like(x) while np.sum(m[:,0]) < x.shape[0] // 8: p = np.random.uniform(-0.5, 0.5, size=4) xa = np.concatenate([x, np.ones([x.shape[0],1])], axis=1) m = (np.dot(xa, p) > 0).astype(np.float32) m = np.repeat(np.expand_dims(m, axis=1), 3, axis=1) else: raise ValueError() return m def wrap_int64(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def wrap_bytes(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def print_progress(count, total): # Percentage completion. pct_complete = float(count) / total # Status-message. # Note the \r which means the line should overwrite itself. msg = "\r- Progress: {0:.1%}".format(pct_complete) # Print it. sys.stdout.write(msg) sys.stdout.flush() def convert(image_paths, out_path, max_files=1000): # Args: # image_paths List of file-paths for the images. # labels Class-labels for the images. # out_path File-path for the TFRecords output file. print("Converting: " + out_path) # Number of images. Used when printing the progress. num_images = len(image_paths) splits = (num_images//max_files) + 1 if num_images%max_files == 0: splits-=1 print(f"\nUsing {splits} shard(s) for {num_images} files, with up to {max_files} samples per shard") file_count = 0 for i in tqdm(range(splits)): # Open a TFRecordWriter for the output-file. with tf.io.TFRecordWriter("{}_{}_{}.tfrecords".format(out_path, i+1, splits)) as writer: # Iterate over all the image-paths and class-labels. current_shard_count = 0 while current_shard_count < max_files: index = i*max_files+current_shard_count if index == len(image_paths): break current_image = image_paths[index] # Load the image-file using matplotlib's imread function. img = torch.load(current_image).numpy().astype(np.float32) # Convert the image to raw bytes. img_bytes = img.tostring() # Create a dict with the data we want to save in the # TFRecords file. You can add more relevant data here. data = \ { 'image': wrap_bytes(img_bytes), 'length': wrap_int64(img.shape[0]), "filename": wrap_bytes(bytes(os.path.splitext(current_image.name)[0], 'utf-8')) } # Wrap the data as TensorFlow Features. feature = tf.train.Features(feature=data) # Wrap again as a TensorFlow Example. example = tf.train.Example(features=feature) # Serialize the data. serialized = example.SerializeToString() # Write the serialized data to the TFRecords file. writer.write(serialized) current_shard_count+=1 file_count += 1 print(f"\nWrote {file_count} elements to TFRecord") if generate_tf_record: train_image_paths = length_filter(get_filenames(train_path)) valid_image_paths = length_filter(get_filenames(valid_path)) test_image_paths = length_filter(get_filenames(test_path)) print(f"Number of training data after length filering: {len(train_image_paths)}") print(f"Number of valid data after length filering: {len(valid_image_paths)}") print(f"Number of testing data after length filering: {len(test_image_paths)}") random.Random(4).shuffle(train_image_paths) train_size = len(train_image_paths) valid_size = len(valid_image_paths) test_size = len(test_image_paths) convert(image_paths=train_image_paths, out_path=train_filename) convert(image_paths=valid_image_paths, out_path=valid_filename) convert(image_paths=test_image_paths, out_path=test_filename) def parse(serialized): # Define a dict with the data-names and types we expect to # find in the TFRecords file. # It is a bit awkward that this needs to be specified again, # because it could have been written in the header of the # TFRecords file instead. features = \ { 'image': tf.io.FixedLenFeature([], tf.string), 'length': tf.io.FixedLenFeature([], tf.int64), 'filename': tf.io.FixedLenFeature([], tf.string), } # Parse the serialized data so we get a dict with our data. parsed_example = tf.io.parse_single_example(serialized=serialized, features=features) # Get the image as raw bytes. image_raw = parsed_example['image'] # Decode the raw bytes so it becomes a tensor with type. image = tf.io.decode_raw(image_raw, tf.float32) # Get the label associated with the image. length = parsed_example['length'] image = tf.reshape(image, [length, 1024]) filename = parsed_example['filename'] # The image and label are now correct TensorFlow types. return image, filename def process(x, filename, set_size, mask_type): x = x/10 ind = np.random.choice(x.shape[0], set_size, replace=False) x = x[ind] m = generate_mask(x, mask_type) #N = np.random.randint(set_size) #S = np.random.randint(x.shape[0] - set_size + 1) #x = x[S:S+set_size] #m = np.zeros_like(x) #S = np.random.randint(set_size - N + 1) #m[S:S+N] = 1.0 return x, m, filename def get_dst(split, set_size, mask_type): if split == 'train': files = glob.glob(train_filename+"*.tfrecords", recursive=False) dst = tf.data.TFRecordDataset(files) size = train_size dst = dst.map(parse) dst = dst.shuffle(256) dst = dst.map(lambda x, y: tuple(tf.compat.v1.py_func(process, [x, y, set_size, mask_type], [tf.float32, tf.float32, tf.string])), num_parallel_calls=8) elif split == 'valid': files = glob.glob(valid_filename+"*.tfrecords", recursive=False) dst = tf.data.TFRecordDataset(files) size = valid_size dst = dst.map(parse) dst = dst.map(lambda x, y: tuple(tf.compat.v1.py_func(process, [x, y, set_size, mask_type], [tf.float32, tf.float32, tf.string])), num_parallel_calls=8) else: files = glob.glob(test_filename+"*.tfrecords", recursive=False) dst = tf.data.TFRecordDataset(files) size = test_size dst = dst.map(parse) dst = dst.map(lambda x, y: tuple(tf.compat.v1.py_func(process, [x, y, set_size, mask_type], [tf.float32, tf.float32, tf.string])), num_parallel_calls=8) return dst, size class Dataset(object): def __init__(self, split, batch_size, set_size, mask_type): g = tf.Graph() with g.as_default(): # open a session config = tf.compat.v1.ConfigProto() config.log_device_placement = True config.allow_soft_placement = True config.gpu_options.allow_growth = True self.sess = tf.compat.v1.Session(config=config, graph=g) # build dataset dst, size = get_dst(split, set_size, mask_type) self.size = size self.num_batches = self.size // batch_size dst = dst.batch(batch_size, drop_remainder=False) dst = dst.prefetch(1) dst_it = tf.compat.v1.data.make_initializable_iterator(dst) x, b, filename = dst_it.get_next() self.x = x self.b = b self.filename = filename #self.x = tf.reshape(x, [batch_size, set_size, 1024]) #self.b = tf.reshape(b, [batch_size, set_size, 1024]) self.dimension = 1024 self.initializer = dst_it.initializer def initialize(self): self.sess.run(self.initializer) def next_batch(self): x, b, filename = self.sess.run([self.x, self.b, self.filename]) m = np.ones_like(b) return {'x':x, 'b':b, 'm':m, "f":filename}